{"title":"High chloride induces aldosterone resistance in the distal nephron.","authors":"Helga Vitzthum, Nina Hauswald, Helena Pham, Leya Eckermann-Reimer, Catherine Meyer-Schwesinger, Heimo Ehmke","doi":"10.1111/apha.14246","DOIUrl":null,"url":null,"abstract":"<p><strong>Aim: </strong>Increasing the dietary intake of K<sup>+</sup> in the setting of a high salt intake promotes renal Na<sup>+</sup> excretion even though K<sup>+</sup> concurrently enhances the secretion of aldosterone, the most effective stimulus for renal Na<sup>+</sup> reabsorption. Here, we questioned whether in the high salt state a mechanism exists, which attenuates the aldosterone response to prevent renal Na<sup>+</sup> reabsorption after high K<sup>+</sup> intake.</p><p><strong>Methods: </strong>Mice were fed diets containing varying amounts of Na<sup>+</sup> combined with KCl or KCitrate. Murine cortical connecting duct (mCCDcl1) cells were cultured in media containing normal or high [Cl<sup>-</sup>]. The response to aldosterone was analyzed by high-resolution imaging and by biochemical approaches.</p><p><strong>Results: </strong>The canonical cellular response to aldosterone, encompassing translocation of the mineralocorticoid receptor (MR) and activation of the epithelial Na<sup>+</sup> channel ENaC was repressed in Na<sup>+</sup>-replete mice fed a high KCl diet, even though plasma aldosterone concentrations were increased. The response to aldosterone was restored in Na<sup>+</sup>-replete mice when the extracellular [Cl<sup>-</sup>] increase was prevented by feeding a high KCitrate diet. In mCCDcl1 cells, an elevated extracellular [Cl<sup>-</sup>] was sufficient to disrupt the aldosterone-induced MR translocation.</p><p><strong>Conclusion: </strong>These findings indicate a pivotal role for extracellular [Cl<sup>-</sup>] in modulating renal aldosterone signaling to adapt MR activation by a high K<sup>+</sup> intake to the NaCl balance. An impairment of [Cl<sup>-</sup>]-mediated aldosterone resistance may contribute to excessive MR activation by aldosterone in the presence of a high salt intake characteristic of the Western diet, resulting in an inappropriate salt reabsorption and its downstream detrimental effects.</p>","PeriodicalId":107,"journal":{"name":"Acta Physiologica","volume":" ","pages":"e14246"},"PeriodicalIF":5.6000,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Physiologica","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1111/apha.14246","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Aim: Increasing the dietary intake of K+ in the setting of a high salt intake promotes renal Na+ excretion even though K+ concurrently enhances the secretion of aldosterone, the most effective stimulus for renal Na+ reabsorption. Here, we questioned whether in the high salt state a mechanism exists, which attenuates the aldosterone response to prevent renal Na+ reabsorption after high K+ intake.
Methods: Mice were fed diets containing varying amounts of Na+ combined with KCl or KCitrate. Murine cortical connecting duct (mCCDcl1) cells were cultured in media containing normal or high [Cl-]. The response to aldosterone was analyzed by high-resolution imaging and by biochemical approaches.
Results: The canonical cellular response to aldosterone, encompassing translocation of the mineralocorticoid receptor (MR) and activation of the epithelial Na+ channel ENaC was repressed in Na+-replete mice fed a high KCl diet, even though plasma aldosterone concentrations were increased. The response to aldosterone was restored in Na+-replete mice when the extracellular [Cl-] increase was prevented by feeding a high KCitrate diet. In mCCDcl1 cells, an elevated extracellular [Cl-] was sufficient to disrupt the aldosterone-induced MR translocation.
Conclusion: These findings indicate a pivotal role for extracellular [Cl-] in modulating renal aldosterone signaling to adapt MR activation by a high K+ intake to the NaCl balance. An impairment of [Cl-]-mediated aldosterone resistance may contribute to excessive MR activation by aldosterone in the presence of a high salt intake characteristic of the Western diet, resulting in an inappropriate salt reabsorption and its downstream detrimental effects.
期刊介绍:
Acta Physiologica is an important forum for the publication of high quality original research in physiology and related areas by authors from all over the world. Acta Physiologica is a leading journal in human/translational physiology while promoting all aspects of the science of physiology. The journal publishes full length original articles on important new observations as well as reviews and commentaries.