Long range signature of liquid's inertia in nanoscale drainage flows†

IF 2.9 3区 化学 Q3 CHEMISTRY, PHYSICAL
Soft Matter Pub Date : 2024-10-23 DOI:10.1039/D4SM01006J
Nathan Bigan, Mathieu Lizée, Marc Pascual, Antoine Niguès, Lydéric Bocquet and Alessandro Siria
{"title":"Long range signature of liquid's inertia in nanoscale drainage flows†","authors":"Nathan Bigan, Mathieu Lizée, Marc Pascual, Antoine Niguès, Lydéric Bocquet and Alessandro Siria","doi":"10.1039/D4SM01006J","DOIUrl":null,"url":null,"abstract":"<p >In confinement, liquid flows are governed by a complex interplay of molecular, viscous and elastic forces. When a fluid is confined between two approaching surfaces, a transition is generally observed from a long range dynamical response dominated by viscous forces in the fluid to a short range elasto-hydrodynamic response due to the elastic deformation of the solid materials. This study investigates the behavior of fluids driven between oscillating solid surfaces using a dynamic Surface Force Apparatus. Our findings reveal that the dominant influence on fluid behavior arises from long-range inertial effects, superseding conventional elasto-hydrodynamic effects. Through systematic experimentation involving fluids of varied viscosities, diverse substrates, we identify key parameters and develop a comprehensive model which explains our measurements. Our findings not only provide insights into confined fluid dynamics but also offer practical implications for various applications in microfluidics, nanotechnology and liquid lubrication.</p>","PeriodicalId":103,"journal":{"name":"Soft Matter","volume":" 44","pages":" 8804-8811"},"PeriodicalIF":2.9000,"publicationDate":"2024-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Soft Matter","FirstCategoryId":"92","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2024/sm/d4sm01006j","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

In confinement, liquid flows are governed by a complex interplay of molecular, viscous and elastic forces. When a fluid is confined between two approaching surfaces, a transition is generally observed from a long range dynamical response dominated by viscous forces in the fluid to a short range elasto-hydrodynamic response due to the elastic deformation of the solid materials. This study investigates the behavior of fluids driven between oscillating solid surfaces using a dynamic Surface Force Apparatus. Our findings reveal that the dominant influence on fluid behavior arises from long-range inertial effects, superseding conventional elasto-hydrodynamic effects. Through systematic experimentation involving fluids of varied viscosities, diverse substrates, we identify key parameters and develop a comprehensive model which explains our measurements. Our findings not only provide insights into confined fluid dynamics but also offer practical implications for various applications in microfluidics, nanotechnology and liquid lubrication.

Abstract Image

纳米级排水流中液体惯性的远距离特征。
在封闭状态下,液体流动受分子力、粘性力和弹性力的复杂相互作用所支配。当流体被限制在两个接近的表面之间时,通常会观察到从流体中的粘性力主导的长程动力学响应到由于固体材料的弹性变形而产生的短程弹性流体动力学响应的转变。本研究使用动态表面力仪器研究了在摆动固体表面之间驱动流体的行为。我们的研究结果表明,对流体行为的主要影响来自长程惯性效应,而非传统的弹流效应。通过对不同粘度、不同基质的流体进行系统实验,我们确定了关键参数,并建立了一个能解释测量结果的综合模型。我们的研究结果不仅为封闭流体动力学提供了见解,还为微流控、纳米技术和液体润滑领域的各种应用提供了实际意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Soft Matter
Soft Matter 工程技术-材料科学:综合
CiteScore
6.00
自引率
5.90%
发文量
891
审稿时长
1.9 months
期刊介绍: Where physics meets chemistry meets biology for fundamental soft matter research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信