Nathan Bigan, Mathieu Lizée, Marc Pascual, Antoine Niguès, Lydéric Bocquet and Alessandro Siria
{"title":"Long range signature of liquid's inertia in nanoscale drainage flows†","authors":"Nathan Bigan, Mathieu Lizée, Marc Pascual, Antoine Niguès, Lydéric Bocquet and Alessandro Siria","doi":"10.1039/D4SM01006J","DOIUrl":null,"url":null,"abstract":"<p >In confinement, liquid flows are governed by a complex interplay of molecular, viscous and elastic forces. When a fluid is confined between two approaching surfaces, a transition is generally observed from a long range dynamical response dominated by viscous forces in the fluid to a short range elasto-hydrodynamic response due to the elastic deformation of the solid materials. This study investigates the behavior of fluids driven between oscillating solid surfaces using a dynamic Surface Force Apparatus. Our findings reveal that the dominant influence on fluid behavior arises from long-range inertial effects, superseding conventional elasto-hydrodynamic effects. Through systematic experimentation involving fluids of varied viscosities, diverse substrates, we identify key parameters and develop a comprehensive model which explains our measurements. Our findings not only provide insights into confined fluid dynamics but also offer practical implications for various applications in microfluidics, nanotechnology and liquid lubrication.</p>","PeriodicalId":103,"journal":{"name":"Soft Matter","volume":" 44","pages":" 8804-8811"},"PeriodicalIF":2.9000,"publicationDate":"2024-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Soft Matter","FirstCategoryId":"92","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2024/sm/d4sm01006j","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
In confinement, liquid flows are governed by a complex interplay of molecular, viscous and elastic forces. When a fluid is confined between two approaching surfaces, a transition is generally observed from a long range dynamical response dominated by viscous forces in the fluid to a short range elasto-hydrodynamic response due to the elastic deformation of the solid materials. This study investigates the behavior of fluids driven between oscillating solid surfaces using a dynamic Surface Force Apparatus. Our findings reveal that the dominant influence on fluid behavior arises from long-range inertial effects, superseding conventional elasto-hydrodynamic effects. Through systematic experimentation involving fluids of varied viscosities, diverse substrates, we identify key parameters and develop a comprehensive model which explains our measurements. Our findings not only provide insights into confined fluid dynamics but also offer practical implications for various applications in microfluidics, nanotechnology and liquid lubrication.