{"title":"Dielectric Modulated Nanotube Tunnel Field-Effect Transistor with Core-Shell Cavity as a Label-Free Biosensor: Proposal and Analysis.","authors":"Sharang Dhar Patel, Bhogi Satya Swaroop, Shubham Sahay","doi":"10.1021/acsabm.4c00989","DOIUrl":null,"url":null,"abstract":"<p><p>Dielectric Modulated Field-Effect Transistors (DMFETs) have emerged as promising candidates for label-free bioanalyte detection. However, the inherent short-channel effects in conventional DMFETs increase their static power dissipation significantly and limit their scalability and sensitivity. Therefore, FETs based on alternate conduction mechanism such as tunneling (TFETs), which are immune to the short-channel effects, appear to be a lucrative alternative to the MOSFETs for biosensing application. In this work, we propose a novel Dual Cavity Dielectric Modulated Nanotube Tunnel FET (DCDM NTTFET)-based label-free biosensor consisting of a Ge source and nanocavities within the core as well as a shell gate stack, which not only outperforms the conventional MOSFET and advanced nanowire (NW) TFET-based biosensors in terms of energy-efficiency and scalability but also exhibits a significantly high drain current sensitivity (<i>S</i><sub><i>I</i><sub>ON</sub></sub> = 2.9 × 10<sup>8</sup>) and a threshold voltage sensitivity (<i>S</i><sub><i>V</i><sub>th</sub></sub> = 0.85), and a considerably high selectivity of more than 6 orders of magnitude. We also perform a comprehensive design space exploration for the proposed DCDM NTTFET and provide necessary design guidelines to further improve its performance considering the practical artifacts such as steric hindrance.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":" ","pages":"7356-7364"},"PeriodicalIF":4.7000,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1021/acsabm.4c00989","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/10/22 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0
Abstract
Dielectric Modulated Field-Effect Transistors (DMFETs) have emerged as promising candidates for label-free bioanalyte detection. However, the inherent short-channel effects in conventional DMFETs increase their static power dissipation significantly and limit their scalability and sensitivity. Therefore, FETs based on alternate conduction mechanism such as tunneling (TFETs), which are immune to the short-channel effects, appear to be a lucrative alternative to the MOSFETs for biosensing application. In this work, we propose a novel Dual Cavity Dielectric Modulated Nanotube Tunnel FET (DCDM NTTFET)-based label-free biosensor consisting of a Ge source and nanocavities within the core as well as a shell gate stack, which not only outperforms the conventional MOSFET and advanced nanowire (NW) TFET-based biosensors in terms of energy-efficiency and scalability but also exhibits a significantly high drain current sensitivity (SION = 2.9 × 108) and a threshold voltage sensitivity (SVth = 0.85), and a considerably high selectivity of more than 6 orders of magnitude. We also perform a comprehensive design space exploration for the proposed DCDM NTTFET and provide necessary design guidelines to further improve its performance considering the practical artifacts such as steric hindrance.
期刊介绍:
ACS Applied Bio Materials is an interdisciplinary journal publishing original research covering all aspects of biomaterials and biointerfaces including and beyond the traditional biosensing, biomedical and therapeutic applications.
The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrates knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important bio applications. The journal is specifically interested in work that addresses the relationship between structure and function and assesses the stability and degradation of materials under relevant environmental and biological conditions.