Danyang Ji, Bo Wang, Kwok-Wai Lo, Chi Man Tsang, Chun Kit Kwok
{"title":"Pre-Defined Stem-Loop Structure Library for the Discovery of L-RNA Aptamers that Target RNA G-Quadruplexes","authors":"Danyang Ji, Bo Wang, Kwok-Wai Lo, Chi Man Tsang, Chun Kit Kwok","doi":"10.1002/anie.202417247","DOIUrl":null,"url":null,"abstract":"L-RNA aptamers have been developed to target G-quadruplexes (G4s) and regulate G4-mediated gene expression. However, the aptamer selection process is laborious and challenging, and aptamer identification is subjected to high failure rate. By analyzing the previously reported G4-binding L-RNA aptamers, we found that the stem-loop (SL) structure is favored by G4 binding. Herein, we present a robust and effective G4-SLSELEX-Seq platform specifically for G4 targets by introducing a pre-defined stem-loop structure library during SELEX process. Using G4-SLSELEX-Seq, we rapidly identified an L-RNA aptamer, L-Apt1-12 for EBNA1 RNA G4 (rG4) in just three selection rounds. L-Apt1-12 maintained the stem-loop structure initially introduced, and possessed a unique G-triplex motif that is important for the strong binding affinity and specificity to EBNA1 rG4. Notably, L-Apt1-12 effectively downregulated endogenous EBNA1 protein expression in human cancer cells and showed selective toxicity towards EBV-positive cancer cells, highlighting its potential for targeted therapy against EBV-associated cancers. Furthermore, we demonstrate the robustness and generality of G4-SLSELEX-Seq by selecting L-RNA aptamers for another two G4 targets-APP rG4 and HCV-1a rG4, also obtaining high-affinity aptamers in three selection rounds. These findings demonstrated G4-SLSELEX-Seq can be a robust and efficient platform for the selection of L-RNA aptamers targeting rG4.","PeriodicalId":125,"journal":{"name":"Angewandte Chemie International Edition","volume":null,"pages":null},"PeriodicalIF":16.1000,"publicationDate":"2024-10-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Angewandte Chemie International Edition","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/anie.202417247","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
L-RNA aptamers have been developed to target G-quadruplexes (G4s) and regulate G4-mediated gene expression. However, the aptamer selection process is laborious and challenging, and aptamer identification is subjected to high failure rate. By analyzing the previously reported G4-binding L-RNA aptamers, we found that the stem-loop (SL) structure is favored by G4 binding. Herein, we present a robust and effective G4-SLSELEX-Seq platform specifically for G4 targets by introducing a pre-defined stem-loop structure library during SELEX process. Using G4-SLSELEX-Seq, we rapidly identified an L-RNA aptamer, L-Apt1-12 for EBNA1 RNA G4 (rG4) in just three selection rounds. L-Apt1-12 maintained the stem-loop structure initially introduced, and possessed a unique G-triplex motif that is important for the strong binding affinity and specificity to EBNA1 rG4. Notably, L-Apt1-12 effectively downregulated endogenous EBNA1 protein expression in human cancer cells and showed selective toxicity towards EBV-positive cancer cells, highlighting its potential for targeted therapy against EBV-associated cancers. Furthermore, we demonstrate the robustness and generality of G4-SLSELEX-Seq by selecting L-RNA aptamers for another two G4 targets-APP rG4 and HCV-1a rG4, also obtaining high-affinity aptamers in three selection rounds. These findings demonstrated G4-SLSELEX-Seq can be a robust and efficient platform for the selection of L-RNA aptamers targeting rG4.
期刊介绍:
Angewandte Chemie, a journal of the German Chemical Society (GDCh), maintains a leading position among scholarly journals in general chemistry with an impressive Impact Factor of 16.6 (2022 Journal Citation Reports, Clarivate, 2023). Published weekly in a reader-friendly format, it features new articles almost every day. Established in 1887, Angewandte Chemie is a prominent chemistry journal, offering a dynamic blend of Review-type articles, Highlights, Communications, and Research Articles on a weekly basis, making it unique in the field.