ZmKTF1 promotes salt tolerance by mediating RNA‐directed DNA methylation in maize

IF 8.3 1区 生物学 Q1 PLANT SCIENCES
New Phytologist Pub Date : 2024-10-26 DOI:10.1111/nph.20225
Jinyu Wang, Leiming Zheng, Yexiang Peng, Zizheng Lu, Minghui Zheng, Zi Wang, Juan Liu, Yan He, Jinhong Luo
{"title":"ZmKTF1 promotes salt tolerance by mediating RNA‐directed DNA methylation in maize","authors":"Jinyu Wang, Leiming Zheng, Yexiang Peng, Zizheng Lu, Minghui Zheng, Zi Wang, Juan Liu, Yan He, Jinhong Luo","doi":"10.1111/nph.20225","DOIUrl":null,"url":null,"abstract":"Summary<jats:list list-type=\"bullet\"> <jats:list-item>The epigenetic process of RNA‐directed DNA methylation (RdDM) regulates the expression of genes and transposons. However, little is known about the involvement of RdDM in the response of maize (<jats:italic>Zea mays</jats:italic>) to salt stress.</jats:list-item> <jats:list-item>Here, we isolated a salt‐sensitive maize mutant and cloned the underlying gene, which encodes KOW DOMAIN‐CONTAINING TRANSCRIPTION FACTOR1 (KTF1), an essential component of the RdDM pathway. Evolutionary analysis identified two homologs of KTF1 (ZmKTF1A and ZmKTF1B) with highly similar expression patterns.</jats:list-item> <jats:list-item>Whole‐genome bisulfite sequencing revealed that mutations in <jats:italic>ZmKTF1</jats:italic> substantially decrease genome‐wide CHH (H = A, C, or T) methylation levels. Moreover, our findings suggest that ZmKTF1‐mediated DNA methylation regulates the expression of multiple key genes involved in oxidoreductase activity upon exposure to salt, concomitant with increased levels of reactive oxygen species. In addition, insertion–deletion mutations (InDels) in the promoter of <jats:italic>ZmKTF1</jats:italic> affect its expression, thereby altering Na<jats:sup>+</jats:sup> concentrations in seedlings in a natural maize population. Therefore, <jats:italic>ZmKTF1</jats:italic> might represent an untapped epigenetic resource for improving salt tolerance in maize.</jats:list-item> <jats:list-item>Overall, our work demonstrates the critical role of <jats:italic>ZmKTF1</jats:italic> involved in the RdDM pathway in maize salt tolerance.</jats:list-item> </jats:list>","PeriodicalId":214,"journal":{"name":"New Phytologist","volume":"34 1","pages":""},"PeriodicalIF":8.3000,"publicationDate":"2024-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"New Phytologist","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1111/nph.20225","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Summary The epigenetic process of RNA‐directed DNA methylation (RdDM) regulates the expression of genes and transposons. However, little is known about the involvement of RdDM in the response of maize (Zea mays) to salt stress. Here, we isolated a salt‐sensitive maize mutant and cloned the underlying gene, which encodes KOW DOMAIN‐CONTAINING TRANSCRIPTION FACTOR1 (KTF1), an essential component of the RdDM pathway. Evolutionary analysis identified two homologs of KTF1 (ZmKTF1A and ZmKTF1B) with highly similar expression patterns. Whole‐genome bisulfite sequencing revealed that mutations in ZmKTF1 substantially decrease genome‐wide CHH (H = A, C, or T) methylation levels. Moreover, our findings suggest that ZmKTF1‐mediated DNA methylation regulates the expression of multiple key genes involved in oxidoreductase activity upon exposure to salt, concomitant with increased levels of reactive oxygen species. In addition, insertion–deletion mutations (InDels) in the promoter of ZmKTF1 affect its expression, thereby altering Na+ concentrations in seedlings in a natural maize population. Therefore, ZmKTF1 might represent an untapped epigenetic resource for improving salt tolerance in maize. Overall, our work demonstrates the critical role of ZmKTF1 involved in the RdDM pathway in maize salt tolerance.
ZmKTF1 通过介导 RNA 引导的 DNA 甲基化促进玉米的耐盐性
摘要 RNA 引导的 DNA 甲基化(RdDM)这一表观遗传过程调控着基因和转座子的表达。然而,人们对 RdDM 参与玉米(Zea mays)对盐胁迫的响应知之甚少。在这里,我们分离了一个盐敏感的玉米突变体,并克隆了其基础基因,该基因编码 KOW DOMAIN-CONTAINING TRANSCRIPTION FACTOR1(KTF1),它是 RdDM 途径的一个重要组成部分。进化分析发现了 KTF1 的两个同源基因(ZmKTF1A 和 ZmKTF1B),它们的表达模式非常相似。全基因组亚硫酸氢盐测序显示,ZmKTF1的突变大大降低了全基因组的CHH(H = A、C或T)甲基化水平。此外,我们的研究结果表明,ZmKTF1介导的DNA甲基化调节了多个关键基因的表达,这些基因在暴露于盐时参与氧化还原酶的活性,同时增加了活性氧的水平。此外,ZmKTF1启动子中的插入-缺失突变(InDels)会影响其表达,从而改变天然玉米群体幼苗中的Na+浓度。因此,ZmKTF1可能是改善玉米耐盐性的一种尚未开发的表观遗传资源。总之,我们的工作证明了参与 RdDM 途径的 ZmKTF1 在玉米耐盐性中的关键作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
New Phytologist
New Phytologist 生物-植物科学
自引率
5.30%
发文量
728
期刊介绍: New Phytologist is an international electronic journal published 24 times a year. It is owned by the New Phytologist Foundation, a non-profit-making charitable organization dedicated to promoting plant science. The journal publishes excellent, novel, rigorous, and timely research and scholarship in plant science and its applications. The articles cover topics in five sections: Physiology & Development, Environment, Interaction, Evolution, and Transformative Plant Biotechnology. These sections encompass intracellular processes, global environmental change, and encourage cross-disciplinary approaches. The journal recognizes the use of techniques from molecular and cell biology, functional genomics, modeling, and system-based approaches in plant science. Abstracting and Indexing Information for New Phytologist includes Academic Search, AgBiotech News & Information, Agroforestry Abstracts, Biochemistry & Biophysics Citation Index, Botanical Pesticides, CAB Abstracts®, Environment Index, Global Health, and Plant Breeding Abstracts, and others.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信