Robust Calix[4]arene-Polyethyleneimine Coated Iron Oxide Nanoparticles for Enhanced Recovery of Gold and Platinum Chloride Complexes

IF 5.8 2区 环境科学与生态学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Carlos Moya, Natacha Brion, Ludovic Troian-Gautier, Ivan Jabin, Gilles Bruylants
{"title":"Robust Calix[4]arene-Polyethyleneimine Coated Iron Oxide Nanoparticles for Enhanced Recovery of Gold and Platinum Chloride Complexes","authors":"Carlos Moya, Natacha Brion, Ludovic Troian-Gautier, Ivan Jabin, Gilles Bruylants","doi":"10.1039/d4en00408f","DOIUrl":null,"url":null,"abstract":"Magnetic removal and recovery of precious metals from wastewater and complex biological media pose significant challenges mostly due to the need for efficient, selective, and stable materials. This work reports a methodology that allows to address these challenges by synthesizing iron oxide nanoparticles (IONPs) coated with a covalent layer of calix[4]arene-tetracarboxylate (X4C4) capable of binding polyethyleneimine (PEI) functionalities via electrostatic interactions. In contrast to citrate coating, which was previously utilized as an attachment layer for PEI, the reductive grafting of X4C4-tetra-diazonium salts onto IONPs results in a considerably more stable coating that proves to be an excellent substrate for the adsorption of PEI. This efficiently results in a synergistic interaction that significantly improves the durability of the PEI coating and maintains the particles in a dispersed state. The stability of the resulting IONPs@X4C4@PEI particles is demonstrated by their ability to withstand both acidic and alkaline conditions without significant particle aggregation or loss of magnetic properties. Moreover, these particles exhibit exceptional magnetic reusability, retaining their selectivity and recovery efficiency over multiple separation cycles. The selective affinity of IONPs@X4C4@PEI particles for Au and Pt stems from the specific binding interactions between the complexes formed by these metals in solution and the PEI coating, enabling efficient recovery of these precious metals. This work places these IONPs at the forefront in terms of stability, reusability, and selectivity, which will undoubtedly open new avenues for environmental remediation and purification applications.","PeriodicalId":73,"journal":{"name":"Environmental Science: Nano","volume":"58 1","pages":""},"PeriodicalIF":5.8000,"publicationDate":"2024-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Science: Nano","FirstCategoryId":"6","ListUrlMain":"https://doi.org/10.1039/d4en00408f","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Magnetic removal and recovery of precious metals from wastewater and complex biological media pose significant challenges mostly due to the need for efficient, selective, and stable materials. This work reports a methodology that allows to address these challenges by synthesizing iron oxide nanoparticles (IONPs) coated with a covalent layer of calix[4]arene-tetracarboxylate (X4C4) capable of binding polyethyleneimine (PEI) functionalities via electrostatic interactions. In contrast to citrate coating, which was previously utilized as an attachment layer for PEI, the reductive grafting of X4C4-tetra-diazonium salts onto IONPs results in a considerably more stable coating that proves to be an excellent substrate for the adsorption of PEI. This efficiently results in a synergistic interaction that significantly improves the durability of the PEI coating and maintains the particles in a dispersed state. The stability of the resulting IONPs@X4C4@PEI particles is demonstrated by their ability to withstand both acidic and alkaline conditions without significant particle aggregation or loss of magnetic properties. Moreover, these particles exhibit exceptional magnetic reusability, retaining their selectivity and recovery efficiency over multiple separation cycles. The selective affinity of IONPs@X4C4@PEI particles for Au and Pt stems from the specific binding interactions between the complexes formed by these metals in solution and the PEI coating, enabling efficient recovery of these precious metals. This work places these IONPs at the forefront in terms of stability, reusability, and selectivity, which will undoubtedly open new avenues for environmental remediation and purification applications.
增强型钙[4]炔-聚乙烯亚胺涂层氧化铁纳米粒子用于提高氯化金和铂络合物的回收率
磁性去除和回收废水和复杂生物介质中的贵金属是一项重大挑战,这主要是因为需要高效、选择性和稳定的材料。这项工作报告了一种方法,通过合成氧化铁纳米颗粒(IONPs),在其表面涂上一层四羧酸钙[4]烯(X4C4)共价层,能够通过静电相互作用结合聚乙烯亚胺(PEI)功能,从而应对这些挑战。与以前用作 PEI 附着层的柠檬酸盐涂层不同,将 X4C4-四偶氮盐还原接枝到 IONPs 上会产生一种稳定得多的涂层,这种涂层被证明是吸附 PEI 的绝佳基质。这有效地产生了一种协同作用,大大提高了 PEI 涂层的耐久性,并使颗粒保持分散状态。由此产生的 IONPs@X4C4@PEI 颗粒的稳定性体现在它们能够承受酸性和碱性条件,而不会出现明显的颗粒聚集或磁性损失。此外,这些颗粒还表现出卓越的磁性可重复使用性,在多次分离循环中仍能保持其选择性和回收效率。IONPs@X4C4@PEI 颗粒对金和铂的选择性亲和力源于这些金属在溶液中形成的络合物与 PEI 涂层之间的特殊结合相互作用,从而实现了这些贵金属的高效回收。这项工作使这些 IONPs 在稳定性、可重复使用性和选择性方面处于领先地位,这无疑将为环境修复和净化应用开辟新的途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Environmental Science: Nano
Environmental Science: Nano CHEMISTRY, MULTIDISCIPLINARY-ENVIRONMENTAL SCIENCES
CiteScore
12.20
自引率
5.50%
发文量
290
审稿时长
2.1 months
期刊介绍: Environmental Science: Nano serves as a comprehensive and high-impact peer-reviewed source of information on the design and demonstration of engineered nanomaterials for environment-based applications. It also covers the interactions between engineered, natural, and incidental nanomaterials with biological and environmental systems. This scope includes, but is not limited to, the following topic areas: Novel nanomaterial-based applications for water, air, soil, food, and energy sustainability Nanomaterial interactions with biological systems and nanotoxicology Environmental fate, reactivity, and transformations of nanoscale materials Nanoscale processes in the environment Sustainable nanotechnology including rational nanomaterial design, life cycle assessment, risk/benefit analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信