Effective Water Confinement and Dual Electrolyte–Electrode Interfaces by Zwitterionic Oligomer for High-Voltage Aqueous Lithium-Ion Batteries

IF 19 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Yinyan Deng, Chunxian Xing, Chuan Li, Yangbo Zhou, Zhiping Peng, Linfeng Fei, Chunyi Zhi, Tao Wang
{"title":"Effective Water Confinement and Dual Electrolyte–Electrode Interfaces by Zwitterionic Oligomer for High-Voltage Aqueous Lithium-Ion Batteries","authors":"Yinyan Deng,&nbsp;Chunxian Xing,&nbsp;Chuan Li,&nbsp;Yangbo Zhou,&nbsp;Zhiping Peng,&nbsp;Linfeng Fei,&nbsp;Chunyi Zhi,&nbsp;Tao Wang","doi":"10.1002/adfm.202416566","DOIUrl":null,"url":null,"abstract":"<p>Aqueous lithium-ion batteries (ALIBs) have attracted significant interest due to their inherent advantage on safety. However, water itself has a narrow electrochemical stability window (ESW), limiting the energy density of ALIBs. Here, a low-molecular-weight zwitterionic oligomer, oligo(propylsulfonate dimethylammonium propylmethacrylamide) (OPDP), as an effective water binding agent for high-voltage ALIBs is demonstrated. The OPDP can effectively confine water molecules while reducing water activity. The OPDP-based electrolyte, with an ultra-high water weight percentage of 25.4%, possesses an outstanding ESW of up to 3.26 V and an ionic conductivity as high as 3.18 mS cm<sup>−1</sup>. Furthermore, the aqueous Mo<sub>6</sub>S<sub>8</sub>//LiMn<sub>2</sub>O<sub>4</sub> full cell with OPDP-based electrolyte achieves a 99.7% capacity retention after 200 cycles at 0.5C with a high Coulombic efficiency (CE) of 98.7% and a specific energy of 88–101 Wh kg<sup>−1</sup>. Also, it achieves an 89% capacity retention after 2000 cycles at 10C with a high CE of 99.9%. These postmortem characterizations suggest that robust organic–inorganic hybrid cathode/anode-electrolyte interfaces have been constructed during the cycling through the heteroatoms of N, S, and O in the zwitterionic oligomer, leading to the inhibited hydrogen/oxygen evolution reactions and high performance of the full cell. This work provides a promising strategy for developing low-cost and high-voltage aqueous batteries.</p>","PeriodicalId":112,"journal":{"name":"Advanced Functional Materials","volume":"35 10","pages":""},"PeriodicalIF":19.0000,"publicationDate":"2024-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Functional Materials","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/adfm.202416566","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Aqueous lithium-ion batteries (ALIBs) have attracted significant interest due to their inherent advantage on safety. However, water itself has a narrow electrochemical stability window (ESW), limiting the energy density of ALIBs. Here, a low-molecular-weight zwitterionic oligomer, oligo(propylsulfonate dimethylammonium propylmethacrylamide) (OPDP), as an effective water binding agent for high-voltage ALIBs is demonstrated. The OPDP can effectively confine water molecules while reducing water activity. The OPDP-based electrolyte, with an ultra-high water weight percentage of 25.4%, possesses an outstanding ESW of up to 3.26 V and an ionic conductivity as high as 3.18 mS cm−1. Furthermore, the aqueous Mo6S8//LiMn2O4 full cell with OPDP-based electrolyte achieves a 99.7% capacity retention after 200 cycles at 0.5C with a high Coulombic efficiency (CE) of 98.7% and a specific energy of 88–101 Wh kg−1. Also, it achieves an 89% capacity retention after 2000 cycles at 10C with a high CE of 99.9%. These postmortem characterizations suggest that robust organic–inorganic hybrid cathode/anode-electrolyte interfaces have been constructed during the cycling through the heteroatoms of N, S, and O in the zwitterionic oligomer, leading to the inhibited hydrogen/oxygen evolution reactions and high performance of the full cell. This work provides a promising strategy for developing low-cost and high-voltage aqueous batteries.

Abstract Image

Abstract Image

用于高电压水基锂离子电池的有效水封闭和双电解质-电极界面的聚合体
水基锂离子电池(ALIB)因其固有的安全优势而备受关注。然而,水本身具有狭窄的电化学稳定性窗口(ESW),限制了水性锂离子电池的能量密度。本文展示了一种低分子量的齐聚物--低聚(丙基磺酸二甲基铵丙基甲基丙烯酰胺)(OPDP)--作为高压 ALIBs 的有效水结合剂。OPDP 可以有效地限制水分子,同时降低水的活性。基于 OPDP 的电解质具有 25.4% 的超高水重量百分比,具有高达 3.26 V 的出色 ESW 和高达 3.18 mS cm-1 的离子电导率。此外,采用 OPDP 电解质的 Mo6S8/LiMn2O4 全电池在 0.5C 下循环 200 次后,容量保持率达到 99.7%,库仑效率(CE)高达 98.7%,比能量为 88-101 Wh kg-1。此外,在 10C 温度下循环 2000 次后,它的容量保持率达到 89%,CE 高达 99.9%。这些死后表征表明,在循环过程中,有机-无机混合阴极/阳极-电解质界面是通过齐聚物中的 N、S 和 O 等杂原子构建的,从而抑制了氢/氧进化反应,实现了全电池的高性能。这项工作为开发低成本、高电压水电池提供了一种前景广阔的策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advanced Functional Materials
Advanced Functional Materials 工程技术-材料科学:综合
CiteScore
29.50
自引率
4.20%
发文量
2086
审稿时长
2.1 months
期刊介绍: Firmly established as a top-tier materials science journal, Advanced Functional Materials reports breakthrough research in all aspects of materials science, including nanotechnology, chemistry, physics, and biology every week. Advanced Functional Materials is known for its rapid and fair peer review, quality content, and high impact, making it the first choice of the international materials science community.
文献相关原料
公司名称
产品信息
阿拉丁
potassium chloride (KCl)
阿拉丁
molybdenum disulfide (MoS2)
阿拉丁
molybdenum powder
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信