Single-Crystalline LiMg Alloy Anode for Deep Cycling All Solid State Lithium Metal Batteries

IF 19 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Linxue Zhang, Dehua Xu, Hao Chen, Rui Li, Zhenglin Hu, Bohua Wen, Aosai Chen, Xingjiang Liu, Jiayan Luo, Aoxuan Wang
{"title":"Single-Crystalline LiMg Alloy Anode for Deep Cycling All Solid State Lithium Metal Batteries","authors":"Linxue Zhang,&nbsp;Dehua Xu,&nbsp;Hao Chen,&nbsp;Rui Li,&nbsp;Zhenglin Hu,&nbsp;Bohua Wen,&nbsp;Aosai Chen,&nbsp;Xingjiang Liu,&nbsp;Jiayan Luo,&nbsp;Aoxuan Wang","doi":"10.1002/adfm.202416013","DOIUrl":null,"url":null,"abstract":"<p>All solid state lithium metal batteries (ASSLMBs) with enhanced energy density has driven the exploration of Li-alloy anodes such as Li-Mg alloy owing to its solid-solution structure and high theoretical specific capacity. But the Li atom diffusion limitation on Li-Mg electrode surface further leads to sluggish atoms transport dynamics. Herein, single-crystalline (110)-oriented Li<sub>0.9</sub>Mg<sub>0.1</sub> (denoted as LiMg(110)) anode is obtained by a tailored melt-annealing procedure to tackle the above issues. Theoretical analyses and experimental results demonstrate that the crystallographic structural (110) orientation of LiMg anode can facilitate Li atom diffusion and guarantee the electrode stability during deep cycling. As a result, the LiMg(110) electrode exhibits longer cycle life with lower overpotential than polycrystalline LiMg at high current densities and areal capacities in symmetric cells. A critical current density (CCD) at the forefront of 2.5 mA cm<sup>−2</sup> is achieved in Li<sub>3</sub>InCl<sub>6</sub> (LIC) solid-state system. The ASSLMB with high areal capacity (3.8 mAh cm<sup>−2</sup>), high current density (0.76 mA cm<sup>−2</sup>), and low negative/positive capacity N/P ratio (2.14) achieves exceptional cyclability over 160 cycles. The outcomes highlight a promising crystallographic regulation strategy toward practical applications of high-performance lithium metal batteries.</p>","PeriodicalId":112,"journal":{"name":"Advanced Functional Materials","volume":"35 9","pages":""},"PeriodicalIF":19.0000,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Functional Materials","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/adfm.202416013","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

All solid state lithium metal batteries (ASSLMBs) with enhanced energy density has driven the exploration of Li-alloy anodes such as Li-Mg alloy owing to its solid-solution structure and high theoretical specific capacity. But the Li atom diffusion limitation on Li-Mg electrode surface further leads to sluggish atoms transport dynamics. Herein, single-crystalline (110)-oriented Li0.9Mg0.1 (denoted as LiMg(110)) anode is obtained by a tailored melt-annealing procedure to tackle the above issues. Theoretical analyses and experimental results demonstrate that the crystallographic structural (110) orientation of LiMg anode can facilitate Li atom diffusion and guarantee the electrode stability during deep cycling. As a result, the LiMg(110) electrode exhibits longer cycle life with lower overpotential than polycrystalline LiMg at high current densities and areal capacities in symmetric cells. A critical current density (CCD) at the forefront of 2.5 mA cm−2 is achieved in Li3InCl6 (LIC) solid-state system. The ASSLMB with high areal capacity (3.8 mAh cm−2), high current density (0.76 mA cm−2), and low negative/positive capacity N/P ratio (2.14) achieves exceptional cyclability over 160 cycles. The outcomes highlight a promising crystallographic regulation strategy toward practical applications of high-performance lithium metal batteries.

Abstract Image

Abstract Image

用于全固态金属锂电池深度循环的单晶锂镁合金负极
全固态锂金属电池(ASSLMB)具有更高的能量密度,其固溶结构和高理论比容量推动了对锂合金阳极(如锂镁合金)的探索。但是,锂原子在锂镁电极表面的扩散限制进一步导致了原子传输动力学的迟缓。为解决上述问题,本文通过定制的熔融退火工艺获得了单晶(110)取向的 Li0.9Mg0.1(简称 LiMg(110))阳极。理论分析和实验结果表明,锂镁阳极的晶体结构(110)取向可促进锂原子扩散,并保证电极在深度循环过程中的稳定性。因此,与多晶锂镁相比,锂镁(110)电极在对称电池的高电流密度和高面积容量条件下具有更长的循环寿命和更低的过电位。在 Li3InCl6(LIC)固态系统中,前沿临界电流密度(CCD)达到了 2.5 mA cm-2。ASSLMB 具有高磁通量(3.8 mAh cm-2)、高电流密度(0.76 mA cm-2)和低负/正容量 N/P 比(2.14),可在 160 个循环周期内实现卓越的可循环性。这些成果凸显了一种很有前景的晶体学调节策略,可用于高性能锂金属电池的实际应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advanced Functional Materials
Advanced Functional Materials 工程技术-材料科学:综合
CiteScore
29.50
自引率
4.20%
发文量
2086
审稿时长
2.1 months
期刊介绍: Firmly established as a top-tier materials science journal, Advanced Functional Materials reports breakthrough research in all aspects of materials science, including nanotechnology, chemistry, physics, and biology every week. Advanced Functional Materials is known for its rapid and fair peer review, quality content, and high impact, making it the first choice of the international materials science community.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信