In situ atomic observations of aggregation growth and evolution of penta-twinned gold nanocrystals

IF 14.7 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Miao Song, Dingri Zhang, Dan Leng, Jaewon Lee, Ziang Yang, Jiaxuan Chen, Dan Li, Lei Wang, Gang Zhou, Rui Yang, Kechao Zhou
{"title":"In situ atomic observations of aggregation growth and evolution of penta-twinned gold nanocrystals","authors":"Miao Song, Dingri Zhang, Dan Leng, Jaewon Lee, Ziang Yang, Jiaxuan Chen, Dan Li, Lei Wang, Gang Zhou, Rui Yang, Kechao Zhou","doi":"10.1038/s41467-024-53501-0","DOIUrl":null,"url":null,"abstract":"<p>The twin boundaries and inherent lattice strain of five-fold twin (5-FT) structures offer a promising and innovative approach to tune nanocrystal configurations and properties, enriching nanomaterial performance. However, a comprehensive understanding of the nonclassical growth models governing 5-FT nanocrystals remains elusive, largely due to the constraints of their small thermodynamically stable size and complex twin configurations. Here, we conducted in situ investigations to elucidate the atomic-scale mechanisms driving size-dependent and twin configuration-related aggregation phenomena between 5-FT and other nanoparticles at the atomic scale. Our results reveal that surface diffusion significantly shapes the morphology of aggregated nanoparticles, promoting the symmetrical formation of 5-FT, especially in smaller nanoparticles. Moreover, the inherent structural characteristics of 5-FT mitigate the dominance of surface diffusion in its morphological evolution, retarding the aggregation evolution process and fostering intricate twin structures. These findings contribute to advancing our capacity to manipulate the configuration of twinned particles, enabling more predictable synthesis of functional nanomaterials for advanced engineering applications.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":null,"pages":null},"PeriodicalIF":14.7000,"publicationDate":"2024-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-024-53501-0","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

The twin boundaries and inherent lattice strain of five-fold twin (5-FT) structures offer a promising and innovative approach to tune nanocrystal configurations and properties, enriching nanomaterial performance. However, a comprehensive understanding of the nonclassical growth models governing 5-FT nanocrystals remains elusive, largely due to the constraints of their small thermodynamically stable size and complex twin configurations. Here, we conducted in situ investigations to elucidate the atomic-scale mechanisms driving size-dependent and twin configuration-related aggregation phenomena between 5-FT and other nanoparticles at the atomic scale. Our results reveal that surface diffusion significantly shapes the morphology of aggregated nanoparticles, promoting the symmetrical formation of 5-FT, especially in smaller nanoparticles. Moreover, the inherent structural characteristics of 5-FT mitigate the dominance of surface diffusion in its morphological evolution, retarding the aggregation evolution process and fostering intricate twin structures. These findings contribute to advancing our capacity to manipulate the configuration of twinned particles, enabling more predictable synthesis of functional nanomaterials for advanced engineering applications.

Abstract Image

原位原子观测五孪晶金纳米晶体的聚集生长和演化
五倍孪晶(5-FT)结构的孪晶边界和固有晶格应变为调整纳米晶体构型和性能、丰富纳米材料性能提供了一种前景广阔的创新方法。然而,主要由于其热力学稳定的小尺寸和复杂的孪晶构型的限制,全面了解 5-FT 纳米晶体的非经典生长模型仍然遥遥无期。在此,我们进行了原位研究,以阐明在原子尺度上驱动 5-FT 和其他纳米粒子之间的尺寸依赖性和孪晶构型相关聚集现象的原子尺度机制。我们的研究结果表明,表面扩散极大地塑造了聚集纳米粒子的形态,促进了 5-FT 的对称形成,尤其是在较小的纳米粒子中。此外,5-FT 的固有结构特征减轻了表面扩散在其形态演变中的主导作用,延缓了聚集演变过程,并形成了错综复杂的孪生结构。这些发现有助于提高我们操纵孪生颗粒构型的能力,从而为先进工程应用合成更可预测的功能性纳米材料。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Nature Communications
Nature Communications Biological Science Disciplines-
CiteScore
24.90
自引率
2.40%
发文量
6928
审稿时长
3.7 months
期刊介绍: Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信