Multisite Crosslinked Poly(ether-urethane)-Based Polymer Electrolytes for High-Voltage Solid-State Lithium Metal Batteries

IF 27.4 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Fei Pei, Yimeng Huang, Lin Wu, Shiyuan Zhou, Qi Kang, Wenjie Lin, Yaqi Liao, Yi Zhang, Kai Huang, Yue Shen, Lixia Yuan, Shi-gang Sun, Zhen Li, Yunhui Huang
{"title":"Multisite Crosslinked Poly(ether-urethane)-Based Polymer Electrolytes for High-Voltage Solid-State Lithium Metal Batteries","authors":"Fei Pei, Yimeng Huang, Lin Wu, Shiyuan Zhou, Qi Kang, Wenjie Lin, Yaqi Liao, Yi Zhang, Kai Huang, Yue Shen, Lixia Yuan, Shi-gang Sun, Zhen Li, Yunhui Huang","doi":"10.1002/adma.202409269","DOIUrl":null,"url":null,"abstract":"Utilizing solid-state polymer electrolytes (SPEs) in high-voltage Li-metal batteries is a promising strategy for achieving high energy density and safety. However, the SPEs face the challenges such as undesirable mechanical strength, low ionic conductivity and incompatible high-voltage interface. Here, a novel crosslinked poly(ether-urethane)-based SPE with a molecular cross-linked structure is fabricated to create high-throughput Li<sup>+</sup> transport pathway. The amino-modified Zr-porphyrin-based metal-organic frameworks (ZrMOF) are introduced as multisite cross-linking nodes and polymer chain extenders. The abundant ether/ketonic-oxygen and Lewis acid sites in the SPE achieve high Li<sup>+</sup> conductivity (5.7 × 10<sup>−4</sup> S cm<sup>−1</sup> at 30 °C) and Li<sup>+</sup> transference number (0.84). The interpenetrating cross-linked structure of SPE with robust mechanical strength results in a record cycle life of 8000 h in Li||Li symmetric cell. The high structural stability of ZrMOF and abundant electron-withdrawing urethane/ureido groups in the SPE with high oxidation potential (5.1 V) enables a discharge capacity of 182 mAh g<sup>−1</sup> at 0.3 C over 500 cycles in a LiNi<sub>0.8</sub>Co<sub>0.1</sub>Mn<sub>0.1</sub>O<sub>2</sub>||Li cell. Remarkably, a high energy density of 446 Wh kg<sup>−1</sup> in a 1.5-Ah pouch cell is obtained with high loading cathode (≈4 mAh cm<sup>−2</sup>), demonstrating a great prospect of the current SPE for practical application in solid-state, high-voltage Li-metal batteries.","PeriodicalId":114,"journal":{"name":"Advanced Materials","volume":null,"pages":null},"PeriodicalIF":27.4000,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/adma.202409269","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Utilizing solid-state polymer electrolytes (SPEs) in high-voltage Li-metal batteries is a promising strategy for achieving high energy density and safety. However, the SPEs face the challenges such as undesirable mechanical strength, low ionic conductivity and incompatible high-voltage interface. Here, a novel crosslinked poly(ether-urethane)-based SPE with a molecular cross-linked structure is fabricated to create high-throughput Li+ transport pathway. The amino-modified Zr-porphyrin-based metal-organic frameworks (ZrMOF) are introduced as multisite cross-linking nodes and polymer chain extenders. The abundant ether/ketonic-oxygen and Lewis acid sites in the SPE achieve high Li+ conductivity (5.7 × 10−4 S cm−1 at 30 °C) and Li+ transference number (0.84). The interpenetrating cross-linked structure of SPE with robust mechanical strength results in a record cycle life of 8000 h in Li||Li symmetric cell. The high structural stability of ZrMOF and abundant electron-withdrawing urethane/ureido groups in the SPE with high oxidation potential (5.1 V) enables a discharge capacity of 182 mAh g−1 at 0.3 C over 500 cycles in a LiNi0.8Co0.1Mn0.1O2||Li cell. Remarkably, a high energy density of 446 Wh kg−1 in a 1.5-Ah pouch cell is obtained with high loading cathode (≈4 mAh cm−2), demonstrating a great prospect of the current SPE for practical application in solid-state, high-voltage Li-metal batteries.

Abstract Image

用于高电压固态锂金属电池的多位交联聚醚脲基聚合物电解质
在高压锂金属电池中使用固态聚合物电解质(SPEs)是实现高能量密度和安全性的一种有前途的策略。然而,固态聚合物电解质面临着不理想的机械强度、低离子电导率和高压界面不兼容等挑战。本文制备了一种新型交联聚(醚-聚氨酯)基 SPE,它具有分子交联结构,可创建高通量的 Li+ 传输通道。其中引入了氨基修饰的锆卟啉基金属有机框架(ZrMOF)作为多位交联节点和聚合物链延伸剂。SPE 中丰富的醚/酮/氧和路易斯酸位点实现了较高的 Li+ 导电性(30 °C 时为 5.7 × 10-4 S cm-1)和 Li+ 传递数(0.84)。SPE 的互穿交联结构具有很强的机械强度,因此在 Li||Li 对称电池中的循环寿命达到了创纪录的 8000 小时。ZrMOF 的高结构稳定性和高氧化电位(5.1 V)的 SPE 中丰富的抽电子氨基甲酸酯/氨基甲酸酯基团使其在镍钴锰锂电池中经过 500 次循环后,在 0.3 C 下的放电容量达到 182 mAh g-1。值得注意的是,在高负载阴极(≈4 mAh cm-2)条件下,1.5 Ah 袋装电池的能量密度高达 446 Wh kg-1,这表明当前的 SPE 在固态高压金属锂电池中的实际应用前景十分广阔。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advanced Materials
Advanced Materials 工程技术-材料科学:综合
CiteScore
43.00
自引率
4.10%
发文量
2182
审稿时长
2 months
期刊介绍: Advanced Materials, one of the world's most prestigious journals and the foundation of the Advanced portfolio, is the home of choice for best-in-class materials science for more than 30 years. Following this fast-growing and interdisciplinary field, we are considering and publishing the most important discoveries on any and all materials from materials scientists, chemists, physicists, engineers as well as health and life scientists and bringing you the latest results and trends in modern materials-related research every week.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信