{"title":"Discovery of Potent and Selective Blockers Targeting the Epilepsy-Associated KNa1.1 Channel","authors":"Ruqiu Zheng, Zhongtang Li, Qiufeng Wang, Shiqi Liu, Ningfeng Liu, Yiyan Li, Guiwang Zhu, Zhenming Liu, Zhuo Huang, Liangren Zhang","doi":"10.1021/acs.jmedchem.4c01815","DOIUrl":null,"url":null,"abstract":"Gain-of-function (GOF) mutations of the sodium-activated potassium channel K<sub>Na</sub>1.1 (Slack, Slo2.2, or K<sub>Ca</sub>4.1) induce severe, drug-resistant forms of epilepsy in infants and children. Although quinidine has shown promise in treating KCNT1-related epilepsies compared to other drugs, its limited efficacy and substantial side effects necessitate the development of new K<sub>Na</sub>1.1 channel inhibitors. In this study, we developed a novel class of K<sub>Na</sub>1.1 inhibitors using combined silico approaches and structural optimization. Among these inhibitors, compound <b>Z05</b> was identified as a selective potential K<sub>Na</sub>1.1 inhibitor, especially against the hERG channel. Moreover, its binding site and potential counteraction to a GOF mutant Y796H were identified by the mutation studies. Our data also showed that <b>Z05</b> had significant pharmacological profiles, including high brain penetration and moderate oral bioavailability, offering a valuable in vitro tool compound for further drug development in treating KCNT1-related epilepsies.","PeriodicalId":46,"journal":{"name":"Journal of Medicinal Chemistry","volume":"14 1","pages":""},"PeriodicalIF":6.8000,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Medicinal Chemistry","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1021/acs.jmedchem.4c01815","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0
Abstract
Gain-of-function (GOF) mutations of the sodium-activated potassium channel KNa1.1 (Slack, Slo2.2, or KCa4.1) induce severe, drug-resistant forms of epilepsy in infants and children. Although quinidine has shown promise in treating KCNT1-related epilepsies compared to other drugs, its limited efficacy and substantial side effects necessitate the development of new KNa1.1 channel inhibitors. In this study, we developed a novel class of KNa1.1 inhibitors using combined silico approaches and structural optimization. Among these inhibitors, compound Z05 was identified as a selective potential KNa1.1 inhibitor, especially against the hERG channel. Moreover, its binding site and potential counteraction to a GOF mutant Y796H were identified by the mutation studies. Our data also showed that Z05 had significant pharmacological profiles, including high brain penetration and moderate oral bioavailability, offering a valuable in vitro tool compound for further drug development in treating KCNT1-related epilepsies.
期刊介绍:
The Journal of Medicinal Chemistry is a prestigious biweekly peer-reviewed publication that focuses on the multifaceted field of medicinal chemistry. Since its inception in 1959 as the Journal of Medicinal and Pharmaceutical Chemistry, it has evolved to become a cornerstone in the dissemination of research findings related to the design, synthesis, and development of therapeutic agents.
The Journal of Medicinal Chemistry is recognized for its significant impact in the scientific community, as evidenced by its 2022 impact factor of 7.3. This metric reflects the journal's influence and the importance of its content in shaping the future of drug discovery and development. The journal serves as a vital resource for chemists, pharmacologists, and other researchers interested in the molecular mechanisms of drug action and the optimization of therapeutic compounds.