Ecological success of extreme halophiles subjected to recurrent osmotic disturbances is primarily driven by congeneric species replacement

Esteban Bustos-Caparros, Tomeu Viver, Juan F Gago, Luis Miguel Rodriguez-Rojas, Janet K Hatt, Stephanus N Venter, Bernhard M Fuchs, Rudolf Amann, Rafael Bosch, Konstantinos T Konstantinidis, Ramon Rossello-Mora
{"title":"Ecological success of extreme halophiles subjected to recurrent osmotic disturbances is primarily driven by congeneric species replacement","authors":"Esteban Bustos-Caparros, Tomeu Viver, Juan F Gago, Luis Miguel Rodriguez-Rojas, Janet K Hatt, Stephanus N Venter, Bernhard M Fuchs, Rudolf Amann, Rafael Bosch, Konstantinos T Konstantinidis, Ramon Rossello-Mora","doi":"10.1093/ismejo/wrae215","DOIUrl":null,"url":null,"abstract":"To understand how extreme halophiles respond to recurrent disturbances, we challenged the communities thriving in salt-saturated (~36% salts) ~230 L brine mesocosms to repeated dilutions down to 13% (D13 mesocosm) or 20% (D20 mesocosm) salts each time mesocosms reached salt saturation due to evaporation (for 10 and 17 cycles, respectively) over 813 days. Depending on the magnitude of dilution, the most prevalent species, Haloquadratum walsbyi and Salinibacter ruber, either increased in dominance by replacing less competitive populations (for D20, moderate stress conditions), or severely decreased in abundance and were eventually replaced by other congeneric species better adapted to the higher osmotic stress (for D13, strong stress conditions). Congeneric species replacement was commonly observed within additional abundant genera in response to changes in environmental or biological conditions (e.g. phage predation) within the same system and under a controlled perturbation of a relevant environmental parameter. Therefore, a genus is an ecologically important level of diversity organization, not just a taxonomic rank, that persists in the environment based on congeneric species replacement due to relatively high functional overlap (gene sharing), with important consequences for the success of the lineage, and similar to the success of a species via strain-replacement. Further, our results showed that successful species were typically accompanied by the emergence of their own viral cohorts, whose intra-cohort diversity appeared to strongly covary with, and likely drive, the intra-host diversity. Collectively, our results show that brine communities are ecologically resilient and continuously adapting to changing environments by transitioning to alternative stable states.","PeriodicalId":516554,"journal":{"name":"The ISME Journal","volume":"28 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The ISME Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/ismejo/wrae215","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

To understand how extreme halophiles respond to recurrent disturbances, we challenged the communities thriving in salt-saturated (~36% salts) ~230 L brine mesocosms to repeated dilutions down to 13% (D13 mesocosm) or 20% (D20 mesocosm) salts each time mesocosms reached salt saturation due to evaporation (for 10 and 17 cycles, respectively) over 813 days. Depending on the magnitude of dilution, the most prevalent species, Haloquadratum walsbyi and Salinibacter ruber, either increased in dominance by replacing less competitive populations (for D20, moderate stress conditions), or severely decreased in abundance and were eventually replaced by other congeneric species better adapted to the higher osmotic stress (for D13, strong stress conditions). Congeneric species replacement was commonly observed within additional abundant genera in response to changes in environmental or biological conditions (e.g. phage predation) within the same system and under a controlled perturbation of a relevant environmental parameter. Therefore, a genus is an ecologically important level of diversity organization, not just a taxonomic rank, that persists in the environment based on congeneric species replacement due to relatively high functional overlap (gene sharing), with important consequences for the success of the lineage, and similar to the success of a species via strain-replacement. Further, our results showed that successful species were typically accompanied by the emergence of their own viral cohorts, whose intra-cohort diversity appeared to strongly covary with, and likely drive, the intra-host diversity. Collectively, our results show that brine communities are ecologically resilient and continuously adapting to changing environments by transitioning to alternative stable states.
受到经常性渗透干扰的极端嗜卤生物的生态成功主要是由同源物种替换驱动的
为了了解极端嗜卤生物如何应对反复出现的干扰,我们在 813 天内,在盐饱和(~36% 盐分)~230 升盐水介观池中,每当介观池因蒸发而达到盐饱和时,我们都要将其中的群落反复稀释到 13%(D13 介观池)或 20%(D20 介观池)的盐分(分别为 10 个和 17 个周期)。根据稀释程度的不同,最普遍的物种 Haloquadratum walsbyi 和 Salinibacter ruber 要么通过取代竞争力较弱的种群(D20,中等胁迫条件下)而提高优势地位,要么数量严重减少,最终被更能适应较高渗透胁迫的其他同系物种取代(D13,强胁迫条件下)。在同一系统中,当环境或生物条件(如噬菌体捕食)发生变化时,在相关环境参数受控扰动的情况下,在其他丰度较高的属中通常会观察到同属物种的替换。因此,属是生态学上重要的多样性组织层次,而不仅仅是分类学上的等级,由于功能重叠(基因共享)程度相对较高,属在环境中基于同源物种替换而持续存在,这对种系的成功具有重要影响,与物种通过菌株替换而成功类似。此外,我们的研究结果表明,成功的物种通常伴随着它们自己的病毒群的出现,而病毒群内部的多样性似乎与宿主内部的多样性密切相关,并可能驱动宿主内部的多样性。总之,我们的研究结果表明,盐水群落具有生态弹性,并能通过过渡到其他稳定状态来不断适应不断变化的环境。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信