Repeated horizontal acquisition of lagriamide-producing symbionts in Lagriinae beetles

Siddharth Uppal, Samantha C Waterworth, Alina Nick, Heiko Vogel, Laura V Flórez, Martin Kaltenpoth, Jason C Kwan
{"title":"Repeated horizontal acquisition of lagriamide-producing symbionts in Lagriinae beetles","authors":"Siddharth Uppal, Samantha C Waterworth, Alina Nick, Heiko Vogel, Laura V Flórez, Martin Kaltenpoth, Jason C Kwan","doi":"10.1093/ismejo/wrae211","DOIUrl":null,"url":null,"abstract":"Microbial symbionts associate with multicellular organisms on a continuum from facultative associations to mutual codependency. In the oldest intracellular symbioses there is exclusive vertical symbiont transmission, and co-diversification of symbiotic partners over millions of years. Such symbionts often undergo genome reduction due to low effective population sizes, frequent population bottlenecks, and reduced purifying selection. Here, we describe multiple independent acquisition events of closely related defensive symbionts followed by genome erosion in a group of Lagriinae beetles. Previous work in Lagria villosa revealed the dominant genome-eroded symbiont of the genus Burkholderia produces the antifungal compound lagriamide, protecting the beetle’s eggs and larvae from antagonistic fungi. Here, we use metagenomics to assemble 11 additional genomes of lagriamide-producing symbionts from seven different host species within Lagriinae from five countries, to unravel the evolutionary history of this symbiotic relationship. In each host, we detected one dominant genome-eroded Burkholderia symbiont encoding the lagriamide biosynthetic gene cluster. However, we did not find evidence for host-symbiont co-diversification, or for monophyly of the lagriamide-producing symbionts. Instead, our analyses support a single ancestral acquisition of the gene cluster followed by at least four independent symbiont acquisitions and subsequent genome erosion in each lineage. By contrast, a clade of plant-associated relatives retained large genomes but secondarily lost the lagriamide gene cluster. Our results, therefore, reveal a dynamic evolutionary history with multiple independent symbiont acquisitions characterized by a high degree of specificity, and highlight the importance of the specialized metabolite lagriamide for the establishment and maintenance of this defensive symbiosis.","PeriodicalId":516554,"journal":{"name":"The ISME Journal","volume":"23 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The ISME Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/ismejo/wrae211","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Microbial symbionts associate with multicellular organisms on a continuum from facultative associations to mutual codependency. In the oldest intracellular symbioses there is exclusive vertical symbiont transmission, and co-diversification of symbiotic partners over millions of years. Such symbionts often undergo genome reduction due to low effective population sizes, frequent population bottlenecks, and reduced purifying selection. Here, we describe multiple independent acquisition events of closely related defensive symbionts followed by genome erosion in a group of Lagriinae beetles. Previous work in Lagria villosa revealed the dominant genome-eroded symbiont of the genus Burkholderia produces the antifungal compound lagriamide, protecting the beetle’s eggs and larvae from antagonistic fungi. Here, we use metagenomics to assemble 11 additional genomes of lagriamide-producing symbionts from seven different host species within Lagriinae from five countries, to unravel the evolutionary history of this symbiotic relationship. In each host, we detected one dominant genome-eroded Burkholderia symbiont encoding the lagriamide biosynthetic gene cluster. However, we did not find evidence for host-symbiont co-diversification, or for monophyly of the lagriamide-producing symbionts. Instead, our analyses support a single ancestral acquisition of the gene cluster followed by at least four independent symbiont acquisitions and subsequent genome erosion in each lineage. By contrast, a clade of plant-associated relatives retained large genomes but secondarily lost the lagriamide gene cluster. Our results, therefore, reveal a dynamic evolutionary history with multiple independent symbiont acquisitions characterized by a high degree of specificity, and highlight the importance of the specialized metabolite lagriamide for the establishment and maintenance of this defensive symbiosis.
拉格瑞纳甲虫重复水平获取拉格瑞纳共生体
微生物共生体与多细胞生物的联系从表面联系到相互依存。在最古老的细胞内共生关系中,共生体具有排他性的垂直传播,共生伙伴经过数百万年的共同多样化。由于有效种群规模小、种群瓶颈频繁出现以及净化选择减少,这类共生体的基因组往往会减少。在这里,我们描述了在一组拉格瑞纳甲虫中,密切相关的防御性共生体的多次独立获取事件,以及随后的基因组侵蚀。之前在Lagria villosa甲虫中的研究发现,被基因组侵蚀的伯克霍尔德菌属共生体产生抗真菌化合物lagriamide,保护甲虫的卵和幼虫免受拮抗真菌的侵害。在本文中,我们利用元基因组学方法,从五个国家的七种不同寄主物种中收集到了另外 11 个产拉格瑞酰胺的共生体基因组,以揭示这种共生关系的进化历史。在每个宿主中,我们都发现了一个编码岩藻酰胺生物合成基因簇的伯克霍尔德菌共生体显性基因组。但是,我们没有发现宿主-共生体共同分化的证据,也没有发现产生岩藻酰胺的共生体单系的证据。相反,我们的分析结果表明,该基因簇是由一个祖先获得的,随后至少有四个独立的共生体获得了该基因簇,并随后在每个世系中发生了基因组侵蚀。与此相反,与植物相关的一个亲缘支系保留了较大的基因组,但其次丢失了岩藻甲酰胺基因簇。因此,我们的研究结果揭示了以高度特异性为特征的多重独立共生体获取的动态进化史,并突出了特化代谢物岩藻酰胺对建立和维持这种防御性共生关系的重要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信