Jinyan Chen, Baoxin Tao, Xinbo Yu, Yiqun Wu, Feng Wang
{"title":"Accuracy of Zygomatic Implant Placement Using Task‐Autonomous Robotic System or Dynamic Navigation: An In Vitro Study","authors":"Jinyan Chen, Baoxin Tao, Xinbo Yu, Yiqun Wu, Feng Wang","doi":"10.1111/clr.14373","DOIUrl":null,"url":null,"abstract":"ObjectivesTo evaluate and compare the accuracy of task‐autonomous robot‐assisted implant surgery (RAIS) and dynamic computer‐assisted implant surgery (dCAIS) for zygomatic implant placement.Materials and MethodsTen atrophic edentulous maxilla models requiring zygomatic implant (ZI) placement were randomly divided into the RAIS and dCAIS groups. Osteotomies and implant placement were performed under the guidance of a task‐autonomous robotic system or dynamic navigation system. A total of 20 ZIs were analyzed. The angular, coronal, lateral coronal, coronal depth, apical, lateral apical, and apical depth deviations were measured and analyzed between the two groups. The primary outcome parameters were the angular deviations between the planned and the placed ZIs. Data was subjected to descriptive and comparative statistical analysis. The significance of inter‐group differences for continuous variables was assessed with Student's two‐sample <jats:italic>t</jats:italic>‐tests, Welch two‐sample <jats:italic>t</jats:italic>‐tests, and Mann–Whitney <jats:italic>U</jats:italic> tests according to the distribution normality and variance homogeneity.ResultsZI placement deviations were compared between the RAIS and dCAIS groups, showing a mean angular deviation of 0.92 ± 0.40° versus 2.03 ± 0.53° (<jats:italic>p</jats:italic> < 0.001), a mean (±SD) coronal deviation of 0.48 ± 0.25 mm versus 1.29 ± 0.46 mm (<jats:italic>p</jats:italic> < 0.001), and a mean apical deviation of 0.88 ± 0.28 mm versus 1.96 ± 0.46 mm (<jats:italic>p</jats:italic> < 0.001).ConclusionsFor computer‐guided ZI placement, task‐autonomous RAIS was superior to dCAIS in terms of accuracy.","PeriodicalId":10455,"journal":{"name":"Clinical Oral Implants Research","volume":null,"pages":null},"PeriodicalIF":4.8000,"publicationDate":"2024-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Clinical Oral Implants Research","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1111/clr.14373","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"DENTISTRY, ORAL SURGERY & MEDICINE","Score":null,"Total":0}
引用次数: 0
Abstract
ObjectivesTo evaluate and compare the accuracy of task‐autonomous robot‐assisted implant surgery (RAIS) and dynamic computer‐assisted implant surgery (dCAIS) for zygomatic implant placement.Materials and MethodsTen atrophic edentulous maxilla models requiring zygomatic implant (ZI) placement were randomly divided into the RAIS and dCAIS groups. Osteotomies and implant placement were performed under the guidance of a task‐autonomous robotic system or dynamic navigation system. A total of 20 ZIs were analyzed. The angular, coronal, lateral coronal, coronal depth, apical, lateral apical, and apical depth deviations were measured and analyzed between the two groups. The primary outcome parameters were the angular deviations between the planned and the placed ZIs. Data was subjected to descriptive and comparative statistical analysis. The significance of inter‐group differences for continuous variables was assessed with Student's two‐sample t‐tests, Welch two‐sample t‐tests, and Mann–Whitney U tests according to the distribution normality and variance homogeneity.ResultsZI placement deviations were compared between the RAIS and dCAIS groups, showing a mean angular deviation of 0.92 ± 0.40° versus 2.03 ± 0.53° (p < 0.001), a mean (±SD) coronal deviation of 0.48 ± 0.25 mm versus 1.29 ± 0.46 mm (p < 0.001), and a mean apical deviation of 0.88 ± 0.28 mm versus 1.96 ± 0.46 mm (p < 0.001).ConclusionsFor computer‐guided ZI placement, task‐autonomous RAIS was superior to dCAIS in terms of accuracy.
目的 评估和比较任务自主机器人辅助种植手术(RAIS)和动态计算机辅助种植手术(dCAIS)植入颧骨种植体的准确性。在任务自主机器人系统或动态导航系统的引导下进行截骨和种植体植入。共分析了 20 个 ZI。测量并分析了两组患者的角度偏差、冠状偏差、侧冠状偏差、冠状深度偏差、根尖偏差、侧根尖偏差和根尖深度偏差。主要结果参数是计划的 ZI 与放置的 ZI 之间的角度偏差。对数据进行了描述性和比较性统计分析。根据分布正态性和方差同质性,采用学生两样本 t 检验、韦尔奇两样本 t 检验和 Mann-Whitney U 检验评估连续变量组间差异的显著性。92±0.40°对2.03±0.53°(p <0.001),平均(±SD)冠状偏差为0.48±0.25 mm对1.29±0.46 mm(p <0.001),平均心尖偏差为0.88±0.28 mm对1.96±0.46 mm(p <0.001)。
期刊介绍:
Clinical Oral Implants Research conveys scientific progress in the field of implant dentistry and its related areas to clinicians, teachers and researchers concerned with the application of this information for the benefit of patients in need of oral implants. The journal addresses itself to clinicians, general practitioners, periodontists, oral and maxillofacial surgeons and prosthodontists, as well as to teachers, academicians and scholars involved in the education of professionals and in the scientific promotion of the field of implant dentistry.