Multivector Contractions Revisited, Part I

IF 1.1 2区 数学 Q2 MATHEMATICS, APPLIED
André L. G. Mandolesi
{"title":"Multivector Contractions Revisited, Part I","authors":"André L. G. Mandolesi","doi":"10.1007/s00006-024-01357-4","DOIUrl":null,"url":null,"abstract":"<div><p>We reorganize, simplify and expand the theory of contractions or interior products of multivectors, and related topics like Hodge star duality. Many results are generalized and new ones are given, like: geometric characterizations of blade contractions and regressive products, higher-order graded Leibniz rules, determinant formulas, improved complex star operators, etc. Different contractions found in the literature are discussed and compared, in special those of Clifford Geometric Algebra. Applications of the theory are developed in a follow-up paper.</p></div>","PeriodicalId":7330,"journal":{"name":"Advances in Applied Clifford Algebras","volume":"34 5","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Applied Clifford Algebras","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s00006-024-01357-4","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

We reorganize, simplify and expand the theory of contractions or interior products of multivectors, and related topics like Hodge star duality. Many results are generalized and new ones are given, like: geometric characterizations of blade contractions and regressive products, higher-order graded Leibniz rules, determinant formulas, improved complex star operators, etc. Different contractions found in the literature are discussed and compared, in special those of Clifford Geometric Algebra. Applications of the theory are developed in a follow-up paper.

Abstract Image

Abstract Image

重温多向量收缩,第一部分
我们重新组织、简化和扩展了多向量的收缩或内部积理论,以及霍奇星对偶性等相关主题。我们对许多结果进行了归纳,并给出了新的结果,如:叶片收缩和回归积的几何特征、高阶分级莱布尼兹规则、行列式公式、改进的复星算子等。讨论并比较了文献中的不同收缩,特别是克利福德几何代数的收缩。该理论的应用将在后续论文中展开。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advances in Applied Clifford Algebras
Advances in Applied Clifford Algebras 数学-物理:数学物理
CiteScore
2.20
自引率
13.30%
发文量
56
审稿时长
3 months
期刊介绍: Advances in Applied Clifford Algebras (AACA) publishes high-quality peer-reviewed research papers as well as expository and survey articles in the area of Clifford algebras and their applications to other branches of mathematics, physics, engineering, and related fields. The journal ensures rapid publication and is organized in six sections: Analysis, Differential Geometry and Dirac Operators, Mathematical Structures, Theoretical and Mathematical Physics, Applications, and Book Reviews.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信