Florian Sure,Sara Afonso,Daniel Essigke,Paul Schmidt,M Zaher Kalo,Viatcheslav Nesterov,Alicia Kißler,Marko Bertog,Ralf Rinke,Sabine Wittmann,Katharina A E Broeker,Thomas Gramberg,Ferruh Artunc,Christoph Korbmacher,Alexandr V Ilyaskin
{"title":"Transmembrane Serine Protease 2 and Proteolytic Activation of the Epithelial Sodium Channel in Mouse Kidney.","authors":"Florian Sure,Sara Afonso,Daniel Essigke,Paul Schmidt,M Zaher Kalo,Viatcheslav Nesterov,Alicia Kißler,Marko Bertog,Ralf Rinke,Sabine Wittmann,Katharina A E Broeker,Thomas Gramberg,Ferruh Artunc,Christoph Korbmacher,Alexandr V Ilyaskin","doi":"10.1681/asn.0000000521","DOIUrl":null,"url":null,"abstract":"BACKGROUND\r\nThe renal epithelial sodium channel (ENaC) is essential for sodium balance and blood pressure control. ENaC undergoes complex proteolytic activation by not yet clearly identified tubular proteases. Here, we examined a potential role of transmembrane serine protease 2 (TMPRSS2).\r\n\r\nMETHODS\r\nMurine ENaC and TMPRSS2 were (co-)expressed in Xenopus laevis oocytes. ENaC cleavage and function were studied in TMPRSS2-deficient murine cortical collecting duct (mCCDcl1) cells and TMPRSS2-knockout (Tmprss2-/-) mice. Short-circuit currents (ISC) were measured to assess ENaC-mediated transepithelial sodium transport of mCCDcl1 cells. The mCCDcl1 cell transcriptome was studied using RNA sequencing. The effect of low-sodium diet with or without high potassium were compared in Tmprss2-/- and wildtype mice using metabolic cages. ENaC-mediated whole-cell currents were recorded from microdissected tubules of Tmprss2-/- and wildtype mice.\r\n\r\nRESULTS\r\nIn oocytes, co-expression of murine TMPRSS2 and ENaC resulted in fully cleaved γ-ENaC and ∼2-fold stimulation of ENaC currents. High baseline expression of TMPRSS2 was detected in mCCDcl1 cells without a stimulatory effect of aldosterone on its function or transcription. TMPRSS2 knockout in mCCDcl1 cells compromised γ-ENaC cleavage and reduced baseline and aldosterone-stimulated ISC which could be rescued by chymotrypsin. A compensatory transcriptional upregulation of other proteases was not observed. Tmprss2-/- mice kept on standard diet exhibited no apparent phenotype, but renal γ-ENaC cleavage was altered. In response to a low-salt diet, particularly with high potassium intake, Tmprss2-/- mice increased plasma aldosterone significantly more than wildtype mice to achieve a similar reduction of renal sodium excretion. Importantly, the stimulatory effect of trypsin on renal tubular ENaC currents was much more pronounced in Tmprss2-/- mice than that in wildtype mice. This indicated the presence of incompletely cleaved and less active channels at the cell surface of TMPRSS2-deficient tubular epithelial cells.\r\n\r\nCONCLUSIONS\r\nTMPRSS2 contributes to proteolytic ENaC activation in mouse kidney in vivo.","PeriodicalId":17217,"journal":{"name":"Journal of The American Society of Nephrology","volume":"40 1","pages":""},"PeriodicalIF":10.3000,"publicationDate":"2024-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of The American Society of Nephrology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1681/asn.0000000521","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"UROLOGY & NEPHROLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
BACKGROUND
The renal epithelial sodium channel (ENaC) is essential for sodium balance and blood pressure control. ENaC undergoes complex proteolytic activation by not yet clearly identified tubular proteases. Here, we examined a potential role of transmembrane serine protease 2 (TMPRSS2).
METHODS
Murine ENaC and TMPRSS2 were (co-)expressed in Xenopus laevis oocytes. ENaC cleavage and function were studied in TMPRSS2-deficient murine cortical collecting duct (mCCDcl1) cells and TMPRSS2-knockout (Tmprss2-/-) mice. Short-circuit currents (ISC) were measured to assess ENaC-mediated transepithelial sodium transport of mCCDcl1 cells. The mCCDcl1 cell transcriptome was studied using RNA sequencing. The effect of low-sodium diet with or without high potassium were compared in Tmprss2-/- and wildtype mice using metabolic cages. ENaC-mediated whole-cell currents were recorded from microdissected tubules of Tmprss2-/- and wildtype mice.
RESULTS
In oocytes, co-expression of murine TMPRSS2 and ENaC resulted in fully cleaved γ-ENaC and ∼2-fold stimulation of ENaC currents. High baseline expression of TMPRSS2 was detected in mCCDcl1 cells without a stimulatory effect of aldosterone on its function or transcription. TMPRSS2 knockout in mCCDcl1 cells compromised γ-ENaC cleavage and reduced baseline and aldosterone-stimulated ISC which could be rescued by chymotrypsin. A compensatory transcriptional upregulation of other proteases was not observed. Tmprss2-/- mice kept on standard diet exhibited no apparent phenotype, but renal γ-ENaC cleavage was altered. In response to a low-salt diet, particularly with high potassium intake, Tmprss2-/- mice increased plasma aldosterone significantly more than wildtype mice to achieve a similar reduction of renal sodium excretion. Importantly, the stimulatory effect of trypsin on renal tubular ENaC currents was much more pronounced in Tmprss2-/- mice than that in wildtype mice. This indicated the presence of incompletely cleaved and less active channels at the cell surface of TMPRSS2-deficient tubular epithelial cells.
CONCLUSIONS
TMPRSS2 contributes to proteolytic ENaC activation in mouse kidney in vivo.
期刊介绍:
The Journal of the American Society of Nephrology (JASN) stands as the preeminent kidney journal globally, offering an exceptional synthesis of cutting-edge basic research, clinical epidemiology, meta-analysis, and relevant editorial content. Representing a comprehensive resource, JASN encompasses clinical research, editorials distilling key findings, perspectives, and timely reviews.
Editorials are skillfully crafted to elucidate the essential insights of the parent article, while JASN actively encourages the submission of Letters to the Editor discussing recently published articles. The reviews featured in JASN are consistently erudite and comprehensive, providing thorough coverage of respective fields. Since its inception in July 1990, JASN has been a monthly publication.
JASN publishes original research reports and editorial content across a spectrum of basic and clinical science relevant to the broad discipline of nephrology. Topics covered include renal cell biology, developmental biology of the kidney, genetics of kidney disease, cell and transport physiology, hemodynamics and vascular regulation, mechanisms of blood pressure regulation, renal immunology, kidney pathology, pathophysiology of kidney diseases, nephrolithiasis, clinical nephrology (including dialysis and transplantation), and hypertension. Furthermore, articles addressing healthcare policy and care delivery issues relevant to nephrology are warmly welcomed.