Allison L Fisher,Sydney Phillips,Chia-Yu Wang,Joao A Paulo,Xia Xiao,Yang Xu,Gillian A Moschetta,Yongqiang Xue,Joseph D Mancias,Jodie L Babitt
{"title":"The hepcidin-ferroportin axis modulates liver endothelial cell BMP expression to influence iron homeostasis in mice.","authors":"Allison L Fisher,Sydney Phillips,Chia-Yu Wang,Joao A Paulo,Xia Xiao,Yang Xu,Gillian A Moschetta,Yongqiang Xue,Joseph D Mancias,Jodie L Babitt","doi":"10.1182/blood.2024024795","DOIUrl":null,"url":null,"abstract":"The liver hormone hepcidin regulates systemic iron homeostasis to provide enough iron for vital processes while limiting toxicity. Hepcidin acts by degrading its receptor ferroportin (encoded by Slc40a1) to decrease iron export to plasma. Iron controls hepcidin production in part by inducing liver endothelial cells (LECs) to produce bone morphogenetic proteins (BMPs), which activate hepcidin transcription in hepatocytes. Here, we used in vitro and in vivo models to investigate whether ferroportin contributes to LEC intracellular iron content to modulate BMP expression and thereby hepcidin. Quantitative proteomics of LECs from mice fed different iron diets demonstrated an inverse relationship between dietary iron and endothelial ferroportin expression. Slc40a1 knockdown primary mouse LECs and endothelial Slc40a1 knockout mice exhibited increased LEC iron and BMP ligand expression. Endothelial Slc40a1 knockout mice also exhibited altered systemic iron homeostasis with decreased serum and total liver iron but preserved erythropoiesis. Although endothelial Slc40a1 knockout mice had similar hepcidin expression as control mice, hepcidin levels were inappropriately high relative to iron levels. Moreover, when iron levels were equalized with iron treatment, hepcidin levels were higher in endothelial Slc40a1 knockout mice than controls. Finally, LEC ferroportin levels were inversely correlated with hepcidin levels in multiple mouse models, and treatment of hepcidin-deficient mice with mini-hepcidin decreased LEC ferroportin expression. Overall, these data show that LEC ferroportin modulates LEC iron and consequently BMP expression to influence hepcidin production. Furthermore, LEC ferroportin expression is regulated by hepcidin, demonstrating bidirectional communication between LECs and hepatocytes to orchestrate systemic iron homeostasis.","PeriodicalId":9102,"journal":{"name":"Blood","volume":"234 1","pages":""},"PeriodicalIF":21.0000,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Blood","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1182/blood.2024024795","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"HEMATOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The liver hormone hepcidin regulates systemic iron homeostasis to provide enough iron for vital processes while limiting toxicity. Hepcidin acts by degrading its receptor ferroportin (encoded by Slc40a1) to decrease iron export to plasma. Iron controls hepcidin production in part by inducing liver endothelial cells (LECs) to produce bone morphogenetic proteins (BMPs), which activate hepcidin transcription in hepatocytes. Here, we used in vitro and in vivo models to investigate whether ferroportin contributes to LEC intracellular iron content to modulate BMP expression and thereby hepcidin. Quantitative proteomics of LECs from mice fed different iron diets demonstrated an inverse relationship between dietary iron and endothelial ferroportin expression. Slc40a1 knockdown primary mouse LECs and endothelial Slc40a1 knockout mice exhibited increased LEC iron and BMP ligand expression. Endothelial Slc40a1 knockout mice also exhibited altered systemic iron homeostasis with decreased serum and total liver iron but preserved erythropoiesis. Although endothelial Slc40a1 knockout mice had similar hepcidin expression as control mice, hepcidin levels were inappropriately high relative to iron levels. Moreover, when iron levels were equalized with iron treatment, hepcidin levels were higher in endothelial Slc40a1 knockout mice than controls. Finally, LEC ferroportin levels were inversely correlated with hepcidin levels in multiple mouse models, and treatment of hepcidin-deficient mice with mini-hepcidin decreased LEC ferroportin expression. Overall, these data show that LEC ferroportin modulates LEC iron and consequently BMP expression to influence hepcidin production. Furthermore, LEC ferroportin expression is regulated by hepcidin, demonstrating bidirectional communication between LECs and hepatocytes to orchestrate systemic iron homeostasis.
期刊介绍:
Blood, the official journal of the American Society of Hematology, published online and in print, provides an international forum for the publication of original articles describing basic laboratory, translational, and clinical investigations in hematology. Primary research articles will be published under the following scientific categories: Clinical Trials and Observations; Gene Therapy; Hematopoiesis and Stem Cells; Immunobiology and Immunotherapy scope; Myeloid Neoplasia; Lymphoid Neoplasia; Phagocytes, Granulocytes and Myelopoiesis; Platelets and Thrombopoiesis; Red Cells, Iron and Erythropoiesis; Thrombosis and Hemostasis; Transfusion Medicine; Transplantation; and Vascular Biology. Papers can be listed under more than one category as appropriate.