Ultrahigh energy storage in multilayer BiFeO3–BaTiO3–NaTaO3 relaxor ferroelectric ceramics†

IF 10.7 2区 材料科学 Q1 CHEMISTRY, PHYSICAL
Rhys Montecillo, R. R. Chien, Cheng-Sao Chen, Po-Hsien Wu, Chi-Shun Tu and Kuei-Chih Feng
{"title":"Ultrahigh energy storage in multilayer BiFeO3–BaTiO3–NaTaO3 relaxor ferroelectric ceramics†","authors":"Rhys Montecillo, R. R. Chien, Cheng-Sao Chen, Po-Hsien Wu, Chi-Shun Tu and Kuei-Chih Feng","doi":"10.1039/D4TA04324C","DOIUrl":null,"url":null,"abstract":"<p >The rising challenge of high-density electric energy storage has accelerated the research of electric energy-storage capacitors due to their high power density and voltage resistance, excellent temperature stability, and environmental friendliness. However, lead-free ferroelectric capacitors generally have a low discharge energy density. This study used a multilayer ceramic capacitor (MLCC) design with active ceramic layers of relaxor ferroelectric NaTaO<small><sub>3</sub></small>-modified BiFeO<small><sub>3</sub></small>–BaTiO<small><sub>3</sub></small> co-sintered with 90Ag/10Pd interlayer electrodes. Superb recoverable energy densities of <em>W</em><small><sub>rec</sub></small> ∼2.8 J cm<small><sup>−3</sup></small> with an energy efficiency of <em>η</em> ∼73% at 400 kV cm<small><sup>−1</sup></small> and <em>W</em><small><sub>rec</sub></small> ∼4.5 J cm<small><sup>−3</sup></small> with an energy efficiency of <em>η</em> ∼77% at 450 kV cm<small><sup>−1</sup></small> were attained, respectively, in 9-active-ceramic-layer and 24-active-ceramic-layer MLCCs. Excellent thermal stability and fatigue resistance of energy storage capability were achieved up to 180 °C and exceeding 1 × 10<small><sup>4</sup></small> cycles. The ultrahigh energy-storage properties can be linked to the synergistic effects of multiple local lattice distortions, nanoscale structures, and interfacial <em>E</em> fields at grain boundaries. This report demonstrates an efficient scheme to utilize ternary BiFeO<small><sub>3</sub></small>–BaTiO<small><sub>3</sub></small>-based ceramics <em>via</em> the MLCC technology for ultrahigh-energy-density electrostatic energy storage.</p>","PeriodicalId":82,"journal":{"name":"Journal of Materials Chemistry A","volume":" 44","pages":" 30642-30654"},"PeriodicalIF":10.7000,"publicationDate":"2024-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Chemistry A","FirstCategoryId":"88","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2024/ta/d4ta04324c","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The rising challenge of high-density electric energy storage has accelerated the research of electric energy-storage capacitors due to their high power density and voltage resistance, excellent temperature stability, and environmental friendliness. However, lead-free ferroelectric capacitors generally have a low discharge energy density. This study used a multilayer ceramic capacitor (MLCC) design with active ceramic layers of relaxor ferroelectric NaTaO3-modified BiFeO3–BaTiO3 co-sintered with 90Ag/10Pd interlayer electrodes. Superb recoverable energy densities of Wrec ∼2.8 J cm−3 with an energy efficiency of η ∼73% at 400 kV cm−1 and Wrec ∼4.5 J cm−3 with an energy efficiency of η ∼77% at 450 kV cm−1 were attained, respectively, in 9-active-ceramic-layer and 24-active-ceramic-layer MLCCs. Excellent thermal stability and fatigue resistance of energy storage capability were achieved up to 180 °C and exceeding 1 × 104 cycles. The ultrahigh energy-storage properties can be linked to the synergistic effects of multiple local lattice distortions, nanoscale structures, and interfacial E fields at grain boundaries. This report demonstrates an efficient scheme to utilize ternary BiFeO3–BaTiO3-based ceramics via the MLCC technology for ultrahigh-energy-density electrostatic energy storage.

Abstract Image

Abstract Image

多层 BiFeO3-BaTiO3-NaTaO3 弛豫铁电陶瓷中的超高能量存储
随着高密度电能存储的挑战日益严峻,电能存储电容器因其功率密度高、耐电压性强、温度稳定性好和环境友好等优点,加速了对其的研究。然而,无铅铁电电容器的放电能量密度普遍较低。本研究采用多层陶瓷电容器 (MLCC) 设计,其活性陶瓷层为弛豫铁电 NaTaO3 改性 BiFeO3-BaTiO3 与 90Ag/10Pd 层间电极共烧结。在 9 层活性陶瓷层和 24 层活性陶瓷层的 MLCC 中,400 kV cm-1 时的可回收能量密度分别为 Wrec ∼ 2.8 J cm-3,能量效率为 η ∼ 73%;450 kV cm-1 时的可回收能量密度分别为 Wrec ∼ 4.5 J cm-3,能量效率为 η ∼ 77%。储能能力的热稳定性和抗疲劳性极佳,温度高达 180 °C,循环次数超过 1 × 104 次。超高的储能特性可能与晶界处的多种局部晶格畸变、纳米级结构和界面电场的协同效应有关。本报告展示了通过 MLCC 技术利用三元 BiFeO3-BaTiO3 基陶瓷进行超高能量密度静电储能的有效方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Materials Chemistry A
Journal of Materials Chemistry A CHEMISTRY, PHYSICAL-ENERGY & FUELS
CiteScore
19.50
自引率
5.00%
发文量
1892
审稿时长
1.5 months
期刊介绍: The Journal of Materials Chemistry A, B & C covers a wide range of high-quality studies in the field of materials chemistry, with each section focusing on specific applications of the materials studied. Journal of Materials Chemistry A emphasizes applications in energy and sustainability, including topics such as artificial photosynthesis, batteries, and fuel cells. Journal of Materials Chemistry B focuses on applications in biology and medicine, while Journal of Materials Chemistry C covers applications in optical, magnetic, and electronic devices. Example topic areas within the scope of Journal of Materials Chemistry A include catalysis, green/sustainable materials, sensors, and water treatment, among others.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信