B. C. Hornbuckle, R. K. Koju, G. Kennedy, P. Jannotti, N. Lorenzo, J. T. Lloyd, A. Giri, K. Solanki, N. N. Thadhani, Y. Mishin, K. A. Darling
{"title":"Direct observation of deformation and resistance to damage accumulation during shock loading of stabilized nanocrystalline Cu-Ta alloys","authors":"B. C. Hornbuckle, R. K. Koju, G. Kennedy, P. Jannotti, N. Lorenzo, J. T. Lloyd, A. Giri, K. Solanki, N. N. Thadhani, Y. Mishin, K. A. Darling","doi":"10.1038/s41467-024-53142-3","DOIUrl":null,"url":null,"abstract":"<p>Energy absorption by matter is fundamental to natural and man-made processes. However, despite this ubiquity, developing materials capable of withstanding severe energy fluxes without degradation is a significant challenge in materials science and engineering. Despite recent advances in creating alloys resistant to energy fluxes, mitigating the damage caused by the absorption and transfer of mechanical energy remains a critical obstacle in both fundamental science and technological applications. This challenge is especially prominent when the mechanical energy is transferred to the material by shock loading. This study demonstrates a phenomenon in which microstructurally stabilized nanocrystalline Cu-Ta alloys can undergo reversal or nearly complete recovery of the dislocation structure after multiple shock-loading impacts, unlike any other known metallic material. The microstructure of these alloys can withstand repeated shock-wave interactions at pressures up to 12 GPa without any significant microstructural damage or deterioration, demonstrating an extraordinary capacity to be virtually immune to the detrimental effects of shock loading.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"62 1","pages":""},"PeriodicalIF":14.7000,"publicationDate":"2024-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-024-53142-3","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Energy absorption by matter is fundamental to natural and man-made processes. However, despite this ubiquity, developing materials capable of withstanding severe energy fluxes without degradation is a significant challenge in materials science and engineering. Despite recent advances in creating alloys resistant to energy fluxes, mitigating the damage caused by the absorption and transfer of mechanical energy remains a critical obstacle in both fundamental science and technological applications. This challenge is especially prominent when the mechanical energy is transferred to the material by shock loading. This study demonstrates a phenomenon in which microstructurally stabilized nanocrystalline Cu-Ta alloys can undergo reversal or nearly complete recovery of the dislocation structure after multiple shock-loading impacts, unlike any other known metallic material. The microstructure of these alloys can withstand repeated shock-wave interactions at pressures up to 12 GPa without any significant microstructural damage or deterioration, demonstrating an extraordinary capacity to be virtually immune to the detrimental effects of shock loading.
期刊介绍:
Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.