Phoebe D. Dawkins, Evan A. Fiorenza, Jeffrey L. Gaeckle, Jennifer A. Lanksbury, Jeroen A. J. M. van de Water, William E. Feeney, C. Drew Harvell, Joleah B. Lamb
{"title":"Seagrass ecosystems as green urban infrastructure to mediate human pathogens in seafood","authors":"Phoebe D. Dawkins, Evan A. Fiorenza, Jeffrey L. Gaeckle, Jennifer A. Lanksbury, Jeroen A. J. M. van de Water, William E. Feeney, C. Drew Harvell, Joleah B. Lamb","doi":"10.1038/s41893-024-01408-5","DOIUrl":null,"url":null,"abstract":"Urban greening offers an opportunity to reinforce food security and safety. Seagrass ecosystems can reduce human bacterial pathogens from coastal sources, but it remains unknown whether this service is conferred to associated food fish. We find a 65% reduction in human bacterial pathogens from marine bivalves experimentally deployed across coastal urban locations with seagrass present compared with locations with seagrass absent. Our model estimates that 1.1 billion people reside in urban areas within 50 km of a seagrass ecosystem. These results highlight the global opportunity to support human health and biodiversity sustainability targets. Seagrass ecosystems often co-occur with urbanized coastal regions, providing important filtration services that reduce human bacterial pathogens from coastal sources. This study examines whether such filtration function is transferred to food fish such as marine bivalves, and its global applicability.","PeriodicalId":19056,"journal":{"name":"Nature Sustainability","volume":"7 10","pages":"1247-1250"},"PeriodicalIF":25.7000,"publicationDate":"2024-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Sustainability","FirstCategoryId":"93","ListUrlMain":"https://www.nature.com/articles/s41893-024-01408-5","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Urban greening offers an opportunity to reinforce food security and safety. Seagrass ecosystems can reduce human bacterial pathogens from coastal sources, but it remains unknown whether this service is conferred to associated food fish. We find a 65% reduction in human bacterial pathogens from marine bivalves experimentally deployed across coastal urban locations with seagrass present compared with locations with seagrass absent. Our model estimates that 1.1 billion people reside in urban areas within 50 km of a seagrass ecosystem. These results highlight the global opportunity to support human health and biodiversity sustainability targets. Seagrass ecosystems often co-occur with urbanized coastal regions, providing important filtration services that reduce human bacterial pathogens from coastal sources. This study examines whether such filtration function is transferred to food fish such as marine bivalves, and its global applicability.
期刊介绍:
Nature Sustainability aims to facilitate cross-disciplinary dialogues and bring together research fields that contribute to understanding how we organize our lives in a finite world and the impacts of our actions.
Nature Sustainability will not only publish fundamental research but also significant investigations into policies and solutions for ensuring human well-being now and in the future.Its ultimate goal is to address the greatest challenges of our time.