Moduli of linear slices of high degree smooth hypersurfaces

IF 0.9 1区 数学 Q2 MATHEMATICS
Anand Patel, Eric Riedl, Dennis Tseng
{"title":"Moduli of linear slices of high degree smooth hypersurfaces","authors":"Anand Patel, Eric Riedl, Dennis Tseng","doi":"10.2140/ant.2024.18.2133","DOIUrl":null,"url":null,"abstract":"<p>We study the variation of linear sections of hypersurfaces in <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msup><mrow><mi>ℙ</mi></mrow><mrow><mi>n</mi></mrow></msup></math>. We completely classify all plane curves, necessarily singular, whose line sections do not vary maximally in moduli. In higher dimensions, we prove that the family of hyperplane sections of any smooth degree <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>d</mi></math> hypersurface in <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msup><mrow><mi>ℙ</mi></mrow><mrow><mi>n</mi></mrow></msup></math> varies maximally for <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>d</mi>\n<mo>≥</mo>\n<mi>n</mi>\n<mo>+</mo> <mn>3</mn></math>. In the process, we generalize the classical Grauert–Mülich theorem about lines in projective space, both to <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>k</mi></math>-planes in projective space and to free rational curves on arbitrary varieties. </p>","PeriodicalId":50828,"journal":{"name":"Algebra & Number Theory","volume":"225 1","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2024-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Algebra & Number Theory","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.2140/ant.2024.18.2133","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We study the variation of linear sections of hypersurfaces in n. We completely classify all plane curves, necessarily singular, whose line sections do not vary maximally in moduli. In higher dimensions, we prove that the family of hyperplane sections of any smooth degree d hypersurface in n varies maximally for d n + 3. In the process, we generalize the classical Grauert–Mülich theorem about lines in projective space, both to k-planes in projective space and to free rational curves on arbitrary varieties.

高阶光滑超曲面线性切片的模量
我们研究ℙn 中超曲面线段的变化。我们完整地分类了所有线段在模量上没有最大变化的平面曲线(必须是奇异曲线)。在更高维度上,我们证明了ℙn 中任何光滑度数为 d 的超曲面的超平面截面族在 d≥n+ 3 时变化最大。在此过程中,我们将关于投影空间中直线的经典格拉尔特-米利希定理推广到投影空间中的 k 平面和任意品种上的自由有理曲线。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.80
自引率
7.70%
发文量
52
审稿时长
6-12 weeks
期刊介绍: ANT’s inclusive definition of algebra and number theory allows it to print research covering a wide range of subtopics, including algebraic and arithmetic geometry. ANT publishes high-quality articles of interest to a broad readership, at a level surpassing all but the top four or five mathematics journals. It exists in both print and electronic forms. The policies of ANT are set by the editorial board — a group of working mathematicians — rather than by a profit-oriented company, so they will remain friendly to mathematicians'' interests. In particular, they will promote broad dissemination, easy electronic access, and permissive use of content to the greatest extent compatible with survival of the journal. All electronic content becomes free and open access 5 years after publication.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信