Achieving Higher Critical Current Density in LGPS-Based Lithium Metal Batteries via a Synergistic Interlayer for Physical Inhibition and Chemical Scavenging of Lithium Dendrites

IF 8.3 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Jie Zhang, Jun Jin, Ouwei Sheng, Ya Chen, Yan Lu, Zhaoyin Wen
{"title":"Achieving Higher Critical Current Density in LGPS-Based Lithium Metal Batteries via a Synergistic Interlayer for Physical Inhibition and Chemical Scavenging of Lithium Dendrites","authors":"Jie Zhang, Jun Jin, Ouwei Sheng, Ya Chen, Yan Lu, Zhaoyin Wen","doi":"10.1021/acsami.4c14887","DOIUrl":null,"url":null,"abstract":"Li<sub>10.35</sub>Ge<sub>1.35</sub>P<sub>1.65</sub>S<sub>12</sub> (LGPS) electrolyte has garnered attention due to its high ionic conductivity and processability. However, its strong incompatibility with lithium metal hinders its practical application. Conventional interlayer strategy isolates Li from LGPS, avoiding the detrimental side reactions, but lithium dendrite penetration is still a problem. To address the aforementioned challenges, we develop a PVDF-HFP-supported PDOL-based interlayer (PDOL/PVDF-HFP), which stabilizes the LGPS/Li interface by synergistically physically inhibiting and chemically scavenging lithium dendrites. The multifunctional feature of the interlayer comes from the use of a bifunctional initiator, InCl<sub>3</sub>. On the one hand, InCl<sub>3</sub> induces the polymerization of DOL, forming a physical separator and protecting lithium from LGPS; on the other hand, in situ reactions between In<sup>3+</sup>/Cl<sup>–</sup> and Li form a LiCl/LiF/LiIn hybrid SEI, homogenizing the surface Li<sup>+</sup> flux and suppressing lithium dendrite formation and penetration. In addition, an unexpected dynamic microdendrite scavenging is realized by virtue of the side reactions of LGPS/Li, which converts the undesirable reaction to be an advantage in our design. Benefiting from the comprehensive advantages of such design, the constructed sulfide-based solid-state batteries achieve a super low interfacial impedance of 5.1 Ω, a high critical current density (CCD) value over 5 mA/cm<sup>2</sup>, and a super long cycling stability over 8000 h. Our synergistic interlayer strategy would open an effective avenue for solving interfacial challenges for practical sulfide-based solid-state batteries.","PeriodicalId":5,"journal":{"name":"ACS Applied Materials & Interfaces","volume":null,"pages":null},"PeriodicalIF":8.3000,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Materials & Interfaces","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsami.4c14887","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Li10.35Ge1.35P1.65S12 (LGPS) electrolyte has garnered attention due to its high ionic conductivity and processability. However, its strong incompatibility with lithium metal hinders its practical application. Conventional interlayer strategy isolates Li from LGPS, avoiding the detrimental side reactions, but lithium dendrite penetration is still a problem. To address the aforementioned challenges, we develop a PVDF-HFP-supported PDOL-based interlayer (PDOL/PVDF-HFP), which stabilizes the LGPS/Li interface by synergistically physically inhibiting and chemically scavenging lithium dendrites. The multifunctional feature of the interlayer comes from the use of a bifunctional initiator, InCl3. On the one hand, InCl3 induces the polymerization of DOL, forming a physical separator and protecting lithium from LGPS; on the other hand, in situ reactions between In3+/Cl and Li form a LiCl/LiF/LiIn hybrid SEI, homogenizing the surface Li+ flux and suppressing lithium dendrite formation and penetration. In addition, an unexpected dynamic microdendrite scavenging is realized by virtue of the side reactions of LGPS/Li, which converts the undesirable reaction to be an advantage in our design. Benefiting from the comprehensive advantages of such design, the constructed sulfide-based solid-state batteries achieve a super low interfacial impedance of 5.1 Ω, a high critical current density (CCD) value over 5 mA/cm2, and a super long cycling stability over 8000 h. Our synergistic interlayer strategy would open an effective avenue for solving interfacial challenges for practical sulfide-based solid-state batteries.

Abstract Image

通过物理抑制和化学清除锂枝晶的协同夹层提高基于 LGPS 的锂金属电池的临界电流密度
Li10.35Ge1.35P1.65S12(LGPS)电解质因其高离子导电性和可加工性而备受关注。然而,它与锂金属的强烈不相容性阻碍了它的实际应用。传统的层间策略将锂与 LGPS 隔离,避免了有害的副反应,但锂枝晶的渗透仍是一个问题。为了应对上述挑战,我们开发了一种以 PDOL 为基础、以 PVDF-HFP 为支撑的中间膜(PDOL/PVDF-HFP),该中间膜通过协同物理抑制和化学清除锂枝晶来稳定 LGPS/Li 界面。该中间膜的多功能特性来自于双功能引发剂 InCl3 的使用。一方面,InCl3 诱导 DOL 的聚合,形成物理隔离层,保护锂免受 LGPS 的影响;另一方面,In3+/Cl- 与锂之间的原位反应形成 LiCl/LiF/LiIn 混合 SEI,使表面 Li+ 通量均匀化,抑制锂枝晶的形成和渗透。此外,LGPS/Li 的副反应还实现了意想不到的动态微枝晶清除,将不良反应转化为我们设计中的优势。得益于这种设计的综合优势,所构建的硫化物固态电池实现了 5.1 Ω 的超低界面阻抗、超过 5 mA/cm2 的高临界电流密度 (CCD) 值以及超过 8000 h 的超长循环稳定性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Materials & Interfaces
ACS Applied Materials & Interfaces 工程技术-材料科学:综合
CiteScore
16.00
自引率
6.30%
发文量
4978
审稿时长
1.8 months
期刊介绍: ACS Applied Materials & Interfaces is a leading interdisciplinary journal that brings together chemists, engineers, physicists, and biologists to explore the development and utilization of newly-discovered materials and interfacial processes for specific applications. Our journal has experienced remarkable growth since its establishment in 2009, both in terms of the number of articles published and the impact of the research showcased. We are proud to foster a truly global community, with the majority of published articles originating from outside the United States, reflecting the rapid growth of applied research worldwide.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信