GLABRA3-mediated trichome branching requires transcriptional repression of MICROTUBULE-DESTABILIZING PROTEIN25.

IF 6.5 1区 生物学 Q1 PLANT SCIENCES
Wenfei Xie,Yuang Zhao,Xianwang Deng,Ruixin Chen,Zhiquan Qiang,Pedro García-Caparros,Tonglin Mao,Tao Qin
{"title":"GLABRA3-mediated trichome branching requires transcriptional repression of MICROTUBULE-DESTABILIZING PROTEIN25.","authors":"Wenfei Xie,Yuang Zhao,Xianwang Deng,Ruixin Chen,Zhiquan Qiang,Pedro García-Caparros,Tonglin Mao,Tao Qin","doi":"10.1093/plphys/kiae563","DOIUrl":null,"url":null,"abstract":"Microtubules play pivotal roles in establishing trichome branching patterns, which is a model system for studying cell-shape control in Arabidopsis (Arabidopsis thaliana). However, the signaling pathway that regulates microtubule reorganization during trichome branching remains poorly understood. In this study, we report that MICROTUBULE-DESTABILIZING PROTEIN25 (MDP25) is involved in GLABRA3 (GL3)-mediated trichome branching by regulating microtubule stability. Loss of MDP25 function led to excessive trichome branching, and this phenotype in mdp25 could not be rescued by the MDP25 K7A or MDP25 K18A mutated variants. Pharmacological treatment and live-cell imaging revealed increased microtubule stability in the mdp25 mutant. Furthermore, the microtubule collar observed during trichome branching remained more intact in mdp25 compared to the WT under oryzalin treatment. Results of genetic assays further demonstrated that knocking out MDP25 rescued the reduced branching phenotype of gl3 trichomes. In gl3 trichomes, normal microtubule organization was disrupted, and microtubule stability was significantly compromised. Moreover, GL3 physically bound to the MDP25 promoter, thereby inhibiting its expression. Overexpression of GL3 negated the effects of PMDP25-driven MDP25 or its mutant proteins on trichome branching and microtubules in the mdp25 background. Overall, our study uncovers a mechanism by which GL3 inhibits MDP25 transcription, thereby influencing microtubule stability and regulating trichome branching. This mechanism provides a connection between early regulatory components and microtubules during trichome development.","PeriodicalId":20101,"journal":{"name":"Plant Physiology","volume":"113 1","pages":""},"PeriodicalIF":6.5000,"publicationDate":"2024-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Physiology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/plphys/kiae563","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Microtubules play pivotal roles in establishing trichome branching patterns, which is a model system for studying cell-shape control in Arabidopsis (Arabidopsis thaliana). However, the signaling pathway that regulates microtubule reorganization during trichome branching remains poorly understood. In this study, we report that MICROTUBULE-DESTABILIZING PROTEIN25 (MDP25) is involved in GLABRA3 (GL3)-mediated trichome branching by regulating microtubule stability. Loss of MDP25 function led to excessive trichome branching, and this phenotype in mdp25 could not be rescued by the MDP25 K7A or MDP25 K18A mutated variants. Pharmacological treatment and live-cell imaging revealed increased microtubule stability in the mdp25 mutant. Furthermore, the microtubule collar observed during trichome branching remained more intact in mdp25 compared to the WT under oryzalin treatment. Results of genetic assays further demonstrated that knocking out MDP25 rescued the reduced branching phenotype of gl3 trichomes. In gl3 trichomes, normal microtubule organization was disrupted, and microtubule stability was significantly compromised. Moreover, GL3 physically bound to the MDP25 promoter, thereby inhibiting its expression. Overexpression of GL3 negated the effects of PMDP25-driven MDP25 or its mutant proteins on trichome branching and microtubules in the mdp25 background. Overall, our study uncovers a mechanism by which GL3 inhibits MDP25 transcription, thereby influencing microtubule stability and regulating trichome branching. This mechanism provides a connection between early regulatory components and microtubules during trichome development.
GLABRA3 介导的毛状体分枝需要 MICROTUBULE-DESTABILIZING PROTEIN25 的转录抑制。
微管在建立毛状体分枝模式中起着关键作用,而毛状体分枝模式是研究拟南芥(Arabidopsis thaliana)细胞形状控制的一个模型系统。然而,人们对毛状体分枝过程中调节微管重组的信号通路仍然知之甚少。在这项研究中,我们报告了微管破坏蛋白25(MDP25)通过调节微管稳定性参与了GLABRA3(GL3)介导的毛状体分枝。MDP25 功能缺失会导致毛状体分支过多,而 MDP25 K7A 或 MDP25 K18A 突变变体无法挽救 mdp25 的这种表型。药理处理和活细胞成像显示,mdp25 突变体的微管稳定性增强。此外,在毛状体分枝过程中观察到的微管轴环在奥利唑啉处理下比在 WT 中保持得更完整。基因检测结果进一步证明,敲除MDP25可以挽救gl3毛状体分支减少的表型。在gl3毛状体中,正常的微管组织被破坏,微管的稳定性受到显著影响。此外,GL3与MDP25启动子物理结合,从而抑制了其表达。在 mdp25 背景下,过量表达 GL3 可抵消 PMDP25 驱动的 MDP25 或其突变体蛋白对毛状体分枝和微管的影响。总之,我们的研究发现了GL3抑制MDP25转录从而影响微管稳定性和调控毛状体分枝的机制。这一机制提供了毛状体发育过程中早期调控成分与微管之间的联系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Plant Physiology
Plant Physiology 生物-植物科学
CiteScore
12.20
自引率
5.40%
发文量
535
审稿时长
2.3 months
期刊介绍: Plant Physiology® is a distinguished and highly respected journal with a rich history dating back to its establishment in 1926. It stands as a leading international publication in the field of plant biology, covering a comprehensive range of topics from the molecular and structural aspects of plant life to systems biology and ecophysiology. Recognized as the most highly cited journal in plant sciences, Plant Physiology® is a testament to its commitment to excellence and the dissemination of groundbreaking research. As the official publication of the American Society of Plant Biologists, Plant Physiology® upholds rigorous peer-review standards, ensuring that the scientific community receives the highest quality research. The journal releases 12 issues annually, providing a steady stream of new findings and insights to its readership.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信