{"title":"LS-Net: lightweight segmentation network for dermatological epidermal segmentation in optical coherence tomography imaging.","authors":"Jinpeng Liao, Tianyu Zhang, Chunhui Li, Zhihong Huang","doi":"10.1364/BOE.529662","DOIUrl":null,"url":null,"abstract":"<p><p>Optical coherence tomography (OCT) can be an important tool for non-invasive dermatological evaluation, providing useful data on epidermal integrity for diagnosing skin diseases. Despite its benefits, OCT's utility is limited by the challenges of accurate, fast epidermal segmentation due to the skin morphological diversity. To address this, we introduce a lightweight segmentation network (LS-Net), a novel deep learning model that combines the robust local feature extraction abilities of Convolution Neural Network and the long-term information processing capabilities of Vision Transformer. LS-Net has a depth-wise convolutional transformer for enhanced spatial contextualization and a squeeze-and-excitation block for feature recalibration, ensuring precise segmentation while maintaining computational efficiency. Our network outperforms existing methods, demonstrating high segmentation accuracy (mean Dice: 0.9624 and mean IoU: 0.9468) with significantly reduced computational demands (floating point operations: 1.131 G). We further validate LS-Net on our acquired dataset, showing its effectiveness in various skin sites (e.g., face, palm) under realistic clinical conditions. This model promises to enhance the diagnostic capabilities of OCT, making it a valuable tool for dermatological practice.</p>","PeriodicalId":8969,"journal":{"name":"Biomedical optics express","volume":"15 10","pages":"5723-5738"},"PeriodicalIF":2.9000,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11482159/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomedical optics express","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1364/BOE.529662","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/10/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Optical coherence tomography (OCT) can be an important tool for non-invasive dermatological evaluation, providing useful data on epidermal integrity for diagnosing skin diseases. Despite its benefits, OCT's utility is limited by the challenges of accurate, fast epidermal segmentation due to the skin morphological diversity. To address this, we introduce a lightweight segmentation network (LS-Net), a novel deep learning model that combines the robust local feature extraction abilities of Convolution Neural Network and the long-term information processing capabilities of Vision Transformer. LS-Net has a depth-wise convolutional transformer for enhanced spatial contextualization and a squeeze-and-excitation block for feature recalibration, ensuring precise segmentation while maintaining computational efficiency. Our network outperforms existing methods, demonstrating high segmentation accuracy (mean Dice: 0.9624 and mean IoU: 0.9468) with significantly reduced computational demands (floating point operations: 1.131 G). We further validate LS-Net on our acquired dataset, showing its effectiveness in various skin sites (e.g., face, palm) under realistic clinical conditions. This model promises to enhance the diagnostic capabilities of OCT, making it a valuable tool for dermatological practice.
期刊介绍:
The journal''s scope encompasses fundamental research, technology development, biomedical studies and clinical applications. BOEx focuses on the leading edge topics in the field, including:
Tissue optics and spectroscopy
Novel microscopies
Optical coherence tomography
Diffuse and fluorescence tomography
Photoacoustic and multimodal imaging
Molecular imaging and therapies
Nanophotonic biosensing
Optical biophysics/photobiology
Microfluidic optical devices
Vision research.