Ultrasound for breast cancer detection: A bibliometric analysis of global trends between 2004 and 2024.

Ya-Yu Sun, Xiao-Tong Shi, Li-Long Xu
{"title":"Ultrasound for breast cancer detection: A bibliometric analysis of global trends between 2004 and 2024.","authors":"Ya-Yu Sun, Xiao-Tong Shi, Li-Long Xu","doi":"10.11152/mu-4443","DOIUrl":null,"url":null,"abstract":"<p><p>With the advancement of computer technology and imaging equipment, ultrasound has emerged as a crucial tool in breast cancer diagnosis. To gain deeper insights into the research landscape of ultrasound in breast cancer diagnosis, this study employed bibliometric methods for a comprehensive analysis spanning from 2004 to 2024, analyzing 3523 articles from 2176 institutions in 82 countries/regions. Over this period, publications on ultrasound diagnosis of breast cancer showed a fluctuating growth trend from 2004 to 2024. Notably, China, Seoul National University and Kim EK emerged as leading contributors in ultrasound for breast cancer detection, with the most published and cited journals being Ultrasound Med Biol and Radiology. The research spots in this area included \"breast lesion\", \"dense breast\" and \"breast-conserving surgery\", while \"machine learning\", \"ultrasonic imaging\", \"convolutional neural network\", \"case report\", \"pathological complete response\", \"deep learning\", \"artificial intelligence\" and \"classification\" are anticipated to become future research frontiers. This groundbreaking bibliometric analysis and visualization of ultrasonic breast cancer diagnosis publications offer clinical medical professionals a reliable research focus and direction.</p>","PeriodicalId":94138,"journal":{"name":"Medical ultrasonography","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Medical ultrasonography","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.11152/mu-4443","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

With the advancement of computer technology and imaging equipment, ultrasound has emerged as a crucial tool in breast cancer diagnosis. To gain deeper insights into the research landscape of ultrasound in breast cancer diagnosis, this study employed bibliometric methods for a comprehensive analysis spanning from 2004 to 2024, analyzing 3523 articles from 2176 institutions in 82 countries/regions. Over this period, publications on ultrasound diagnosis of breast cancer showed a fluctuating growth trend from 2004 to 2024. Notably, China, Seoul National University and Kim EK emerged as leading contributors in ultrasound for breast cancer detection, with the most published and cited journals being Ultrasound Med Biol and Radiology. The research spots in this area included "breast lesion", "dense breast" and "breast-conserving surgery", while "machine learning", "ultrasonic imaging", "convolutional neural network", "case report", "pathological complete response", "deep learning", "artificial intelligence" and "classification" are anticipated to become future research frontiers. This groundbreaking bibliometric analysis and visualization of ultrasonic breast cancer diagnosis publications offer clinical medical professionals a reliable research focus and direction.

超声波乳腺癌检测:对 2004 年至 2024 年全球趋势的文献计量分析。
随着计算机技术和成像设备的发展,超声波已成为乳腺癌诊断的重要工具。为了更深入地了解超声诊断乳腺癌的研究现状,本研究采用文献计量学方法进行了全面分析,分析时间跨度从 2004 年到 2024 年,分析了来自 82 个国家/地区 2176 个机构的 3523 篇文章。在此期间,从 2004 年到 2024 年,有关乳腺癌超声诊断的论文呈波动增长趋势。值得注意的是,中国、首尔国立大学和 Kim EK 成为乳腺癌超声检测领域的主要贡献者,发表和引用最多的期刊是《超声医学生物学》和《放射学》。该领域的研究热点包括 "乳腺病变"、"致密乳腺 "和 "保乳手术",而 "机器学习"、"超声成像"、"卷积神经网络"、"病例报告"、"病理完全反应"、"深度学习"、"人工智能 "和 "分类 "预计将成为未来的研究前沿。这种开创性的超声乳腺癌诊断出版物文献计量分析和可视化为临床医学专业人员提供了可靠的研究重点和方向。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信