Rocío Balderrama , Mariana Inés Prieto , Constanza Sánchez de la Vega , Federico Vázquez
{"title":"Optimal control for an SIR model with limited hospitalised patients","authors":"Rocío Balderrama , Mariana Inés Prieto , Constanza Sánchez de la Vega , Federico Vázquez","doi":"10.1016/j.mbs.2024.109317","DOIUrl":null,"url":null,"abstract":"<div><div>This paper analyses the optimal control of infectious disease propagation using a classic susceptible–infected–recovered (SIR) model characterised by permanent immunity and the absence of available vaccines. The control is performed over a time-dependent mean reproduction number, in order to minimise the cumulative number of ever-infected individuals (recovered), under different constraints. We consider constraints on non-pharmaceutical interventions ranging from partial lockdown to non-intervention, as well as the social and economic costs associated with such interventions, and the capacity limitations of intensive care units that limits the number of infected individuals to a maximum allowed value. We rigorously derive an optimal quarantine strategy based on necessary optimality conditions. The obtained optimal strategy is of a boundary-bang type, comprising three phases: an initial phase with no intervention, a second phase maintaining the infected population at its maximum possible value, and a final phase of partial lockdown applied over a single interval. The optimal policy is further refined by optimising the transition times between these phases. We show that these results are in excellent agreement with the numerical solution of the problem.</div></div>","PeriodicalId":51119,"journal":{"name":"Mathematical Biosciences","volume":"378 ","pages":"Article 109317"},"PeriodicalIF":1.9000,"publicationDate":"2024-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Biosciences","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0025556424001779","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
This paper analyses the optimal control of infectious disease propagation using a classic susceptible–infected–recovered (SIR) model characterised by permanent immunity and the absence of available vaccines. The control is performed over a time-dependent mean reproduction number, in order to minimise the cumulative number of ever-infected individuals (recovered), under different constraints. We consider constraints on non-pharmaceutical interventions ranging from partial lockdown to non-intervention, as well as the social and economic costs associated with such interventions, and the capacity limitations of intensive care units that limits the number of infected individuals to a maximum allowed value. We rigorously derive an optimal quarantine strategy based on necessary optimality conditions. The obtained optimal strategy is of a boundary-bang type, comprising three phases: an initial phase with no intervention, a second phase maintaining the infected population at its maximum possible value, and a final phase of partial lockdown applied over a single interval. The optimal policy is further refined by optimising the transition times between these phases. We show that these results are in excellent agreement with the numerical solution of the problem.
期刊介绍:
Mathematical Biosciences publishes work providing new concepts or new understanding of biological systems using mathematical models, or methodological articles likely to find application to multiple biological systems. Papers are expected to present a major research finding of broad significance for the biological sciences, or mathematical biology. Mathematical Biosciences welcomes original research articles, letters, reviews and perspectives.