Rocío Balderrama , Mariana Inés Prieto , Constanza Sánchez de la Vega , Federico Vázquez
{"title":"Optimal control for an SIR model with limited hospitalised patients","authors":"Rocío Balderrama , Mariana Inés Prieto , Constanza Sánchez de la Vega , Federico Vázquez","doi":"10.1016/j.mbs.2024.109317","DOIUrl":null,"url":null,"abstract":"<div><div>This paper analyses the optimal control of infectious disease propagation using a classic susceptible–infected–recovered (SIR) model characterised by permanent immunity and the absence of available vaccines. The control is performed over a time-dependent mean reproduction number, in order to minimise the cumulative number of ever-infected individuals (recovered), under different constraints. We consider constraints on non-pharmaceutical interventions ranging from partial lockdown to non-intervention, as well as the social and economic costs associated with such interventions, and the capacity limitations of intensive care units that limits the number of infected individuals to a maximum allowed value. We rigorously derive an optimal quarantine strategy based on necessary optimality conditions. The obtained optimal strategy is of a boundary-bang type, comprising three phases: an initial phase with no intervention, a second phase maintaining the infected population at its maximum possible value, and a final phase of partial lockdown applied over a single interval. The optimal policy is further refined by optimising the transition times between these phases. We show that these results are in excellent agreement with the numerical solution of the problem.</div></div>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0025556424001779","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
This paper analyses the optimal control of infectious disease propagation using a classic susceptible–infected–recovered (SIR) model characterised by permanent immunity and the absence of available vaccines. The control is performed over a time-dependent mean reproduction number, in order to minimise the cumulative number of ever-infected individuals (recovered), under different constraints. We consider constraints on non-pharmaceutical interventions ranging from partial lockdown to non-intervention, as well as the social and economic costs associated with such interventions, and the capacity limitations of intensive care units that limits the number of infected individuals to a maximum allowed value. We rigorously derive an optimal quarantine strategy based on necessary optimality conditions. The obtained optimal strategy is of a boundary-bang type, comprising three phases: an initial phase with no intervention, a second phase maintaining the infected population at its maximum possible value, and a final phase of partial lockdown applied over a single interval. The optimal policy is further refined by optimising the transition times between these phases. We show that these results are in excellent agreement with the numerical solution of the problem.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.