{"title":"Mechanistic insights on stabilization and destabilization effect of ionic liquids on type I collagen fibrils","authors":"Kuntala Banerjee , Christina Mathew , Chandrasekar Inbasekar , Nishter Nishad Fathima","doi":"10.1016/j.jmbbm.2024.106772","DOIUrl":null,"url":null,"abstract":"<div><div>Tuned assembly of collagen has tremendous applications in the field of biomedical and tissue engineering owing to its targeted biological functionalities. In this study, ionic liquids choline dihydrogen citrate (CDHC) and diethyl methyl ammonium methane sulfonate (AMS) have been used to regulate the self-assembly of collagen at its physiological pH by probing the assembled systems at certain concentration ratios of ionic liquids and the systems were studied using various characterization methods. Due to interaction with collagen, choline dihydrogen citrate causes delay in the collagen fibrillisation process showing no binding interactions with collagen. In contrast, diethyl methyl ammonium methane sulfonate shows crosslinking effect on collagen fibrillisation due to the electrostatic interaction with the tetrahedral hydration shell of collagen moieties. From rheological studies it was observed that the AMS treated collagen fibril at 1:1 % (w/v) has highest linear viscoelastic range, this can bear the stress under high strain compare to native collagen fibril as well as all CDHC composites. For a sustainable biomaterial or bio-scaffold, mechanical property plays pivotal role on it and from our experimental analysis we found certain composites of ionic liquid treated collagen fibrillar assembly which may act as a sustainable biomaterial or bio-scaffold. It was also evolved that, how the structure-function relationship of ionic force modulated fibrillar assembly controlling the mechanical properties of the tuned system. This self-assembled, ionic-liquid treated collagen-fibrillar system would accelerate various force modulated fibrillar network study, for mimicking the ECM and tissue engineering application.</div></div>","PeriodicalId":380,"journal":{"name":"Journal of the Mechanical Behavior of Biomedical Materials","volume":"160 ","pages":"Article 106772"},"PeriodicalIF":3.3000,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Mechanical Behavior of Biomedical Materials","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1751616124004041","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Tuned assembly of collagen has tremendous applications in the field of biomedical and tissue engineering owing to its targeted biological functionalities. In this study, ionic liquids choline dihydrogen citrate (CDHC) and diethyl methyl ammonium methane sulfonate (AMS) have been used to regulate the self-assembly of collagen at its physiological pH by probing the assembled systems at certain concentration ratios of ionic liquids and the systems were studied using various characterization methods. Due to interaction with collagen, choline dihydrogen citrate causes delay in the collagen fibrillisation process showing no binding interactions with collagen. In contrast, diethyl methyl ammonium methane sulfonate shows crosslinking effect on collagen fibrillisation due to the electrostatic interaction with the tetrahedral hydration shell of collagen moieties. From rheological studies it was observed that the AMS treated collagen fibril at 1:1 % (w/v) has highest linear viscoelastic range, this can bear the stress under high strain compare to native collagen fibril as well as all CDHC composites. For a sustainable biomaterial or bio-scaffold, mechanical property plays pivotal role on it and from our experimental analysis we found certain composites of ionic liquid treated collagen fibrillar assembly which may act as a sustainable biomaterial or bio-scaffold. It was also evolved that, how the structure-function relationship of ionic force modulated fibrillar assembly controlling the mechanical properties of the tuned system. This self-assembled, ionic-liquid treated collagen-fibrillar system would accelerate various force modulated fibrillar network study, for mimicking the ECM and tissue engineering application.
期刊介绍:
The Journal of the Mechanical Behavior of Biomedical Materials is concerned with the mechanical deformation, damage and failure under applied forces, of biological material (at the tissue, cellular and molecular levels) and of biomaterials, i.e. those materials which are designed to mimic or replace biological materials.
The primary focus of the journal is the synthesis of materials science, biology, and medical and dental science. Reports of fundamental scientific investigations are welcome, as are articles concerned with the practical application of materials in medical devices. Both experimental and theoretical work is of interest; theoretical papers will normally include comparison of predictions with experimental data, though we recognize that this may not always be appropriate. The journal also publishes technical notes concerned with emerging experimental or theoretical techniques, letters to the editor and, by invitation, review articles and papers describing existing techniques for the benefit of an interdisciplinary readership.