User-wise perturbations for user identity protection in EEG-based BCIs.

Xiaoqing Chen, Siyang Li, Yunlu Tu, Ziwei Wang, Dongrui Wu
{"title":"User-wise perturbations for user identity protection in EEG-based BCIs.","authors":"Xiaoqing Chen, Siyang Li, Yunlu Tu, Ziwei Wang, Dongrui Wu","doi":"10.1088/1741-2552/ad88a5","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>An electroencephalogram (EEG)-based brain-computer interface (BCI) is a direct communication pathway between the human brain and a computer. Most research so far studied more accurate BCIs, but much less attention has been paid to the ethics of BCIs. Aside from task-specific information, EEG signals also contain rich private information, e.g., user identity, emotion, disorders, etc., which should be protected.</p><p><strong>Approach: </strong>We show for the first time that adding user-wise perturbations can make identity information in EEG unlearnable. We propose four types of user-wise privacy-preserving perturbations, i.e., random noise, synthetic noise, error minimization noise, and error maximization noise. After adding the proposed perturbations to EEG training data, the user identity information in the data becomes unlearnable, while the BCI task information remains unaffected.</p><p><strong>Main results: </strong>Experiments on six EEG datasets using three neural network classifiers and various traditional machine learning models demonstrated the robustness and practicability of the proposed perturbations.</p><p><strong>Significance: </strong>Our research shows the feasibility of hiding user identity information in EEG data without impacting the primary BCI task information.</p>","PeriodicalId":94096,"journal":{"name":"Journal of neural engineering","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of neural engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/1741-2552/ad88a5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Objective: An electroencephalogram (EEG)-based brain-computer interface (BCI) is a direct communication pathway between the human brain and a computer. Most research so far studied more accurate BCIs, but much less attention has been paid to the ethics of BCIs. Aside from task-specific information, EEG signals also contain rich private information, e.g., user identity, emotion, disorders, etc., which should be protected.

Approach: We show for the first time that adding user-wise perturbations can make identity information in EEG unlearnable. We propose four types of user-wise privacy-preserving perturbations, i.e., random noise, synthetic noise, error minimization noise, and error maximization noise. After adding the proposed perturbations to EEG training data, the user identity information in the data becomes unlearnable, while the BCI task information remains unaffected.

Main results: Experiments on six EEG datasets using three neural network classifiers and various traditional machine learning models demonstrated the robustness and practicability of the proposed perturbations.

Significance: Our research shows the feasibility of hiding user identity information in EEG data without impacting the primary BCI task information.

在基于脑电图的生物识别(BCI)系统中保护用户身份的用户自扰动。
目的:基于脑电图(EEG)的脑机接口(BCI)是人脑与计算机之间的直接通信途径。迄今为止,大多数研究都在研究更精确的 BCI,但对 BCI 的伦理问题关注较少。除了特定任务信息外,脑电信号还包含丰富的私人信息,如用户身份、情绪、疾病等,这些信息都应受到保护:方法:我们首次证明,添加用户自发扰动可使脑电图中的身份信息变得不可学习。我们提出了四种用户明智的隐私保护扰动,即随机噪音、合成噪音、误差最小化噪音和误差最大化噪音。在脑电图训练数据中加入建议的扰动后,数据中的用户身份信息变得不可学习,而BCI任务信息则不受影响:主要结果:使用三种神经网络分类器和各种传统机器学习模型在六个脑电图数据集上进行的实验证明了所提出的扰动的鲁棒性和实用性:我们的研究表明,在不影响主要 BCI 任务信息的情况下,在脑电图数据中隐藏用户身份信息是可行的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信