{"title":"Recent advances in chemotherapy for cancer therapy over Cu-based nanocatalysts","authors":"Meng-Yu Wang and Zhi-Xin Li","doi":"10.1039/D4TB01140F","DOIUrl":null,"url":null,"abstract":"<p >Recently, the emerging chemotherapy (CDT) has provided a new biocompatibility pathway for cancer therapy. Among them, Cu-based nanocatalysts with good biocompatibility and Fenton-like catalytic efficiency are considered to be a promising approach for enhancing CDT and CDT-involved multimodal synergies to improve the effectiveness of catalytic cancer therapy. Meanwhile, the emerging <em>in situ</em> therapy strategy promoted by Cu-based nanocatalysts has proven to exhibit attractive clinical application potential in replacing traditional chemotherapy and radiotherapy for cancer therapy with significant toxic side effects. In this work, the recent progress of various Cu-based nanocatalysts in cancer therapy was reviewed, especially the remarkable achievements in the catalytic treatment of cancer in the tumor microenvironment using CDT and CDT-involved multimodal synergies. In addition, the development expectations and challenges of Cu-based nanocatalysts in the field of cancer therapy were briefly summarized and discussed. We expect that this review will contribute to the development of Cu-based nanocatalysts for cancer therapy.</p>","PeriodicalId":83,"journal":{"name":"Journal of Materials Chemistry B","volume":" 44","pages":" 11336-11346"},"PeriodicalIF":6.1000,"publicationDate":"2024-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Chemistry B","FirstCategoryId":"1","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2024/tb/d4tb01140f","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0
Abstract
Recently, the emerging chemotherapy (CDT) has provided a new biocompatibility pathway for cancer therapy. Among them, Cu-based nanocatalysts with good biocompatibility and Fenton-like catalytic efficiency are considered to be a promising approach for enhancing CDT and CDT-involved multimodal synergies to improve the effectiveness of catalytic cancer therapy. Meanwhile, the emerging in situ therapy strategy promoted by Cu-based nanocatalysts has proven to exhibit attractive clinical application potential in replacing traditional chemotherapy and radiotherapy for cancer therapy with significant toxic side effects. In this work, the recent progress of various Cu-based nanocatalysts in cancer therapy was reviewed, especially the remarkable achievements in the catalytic treatment of cancer in the tumor microenvironment using CDT and CDT-involved multimodal synergies. In addition, the development expectations and challenges of Cu-based nanocatalysts in the field of cancer therapy were briefly summarized and discussed. We expect that this review will contribute to the development of Cu-based nanocatalysts for cancer therapy.
期刊介绍:
Journal of Materials Chemistry A, B & C cover high quality studies across all fields of materials chemistry. The journals focus on those theoretical or experimental studies that report new understanding, applications, properties and synthesis of materials. Journal of Materials Chemistry A, B & C are separated by the intended application of the material studied. Broadly, applications in energy and sustainability are of interest to Journal of Materials Chemistry A, applications in biology and medicine are of interest to Journal of Materials Chemistry B, and applications in optical, magnetic and electronic devices are of interest to Journal of Materials Chemistry C.Journal of Materials Chemistry B is a Transformative Journal and Plan S compliant. Example topic areas within the scope of Journal of Materials Chemistry B are listed below. This list is neither exhaustive nor exclusive:
Antifouling coatings
Biocompatible materials
Bioelectronics
Bioimaging
Biomimetics
Biomineralisation
Bionics
Biosensors
Diagnostics
Drug delivery
Gene delivery
Immunobiology
Nanomedicine
Regenerative medicine & Tissue engineering
Scaffolds
Soft robotics
Stem cells
Therapeutic devices