CuS enabled efficient Fenton-like oxidation of phenylarsonic acid and inorganic arsenic immobilization.

Journal of hazardous materials Pub Date : 2024-12-05 Epub Date: 2024-10-16 DOI:10.1016/j.jhazmat.2024.136171
Wei Liu, Fengfeng Zhou, Huan Yang, Yunxiao Shi, Yaxin Qin, Hongwei Sun, Lizhi Zhang
{"title":"CuS enabled efficient Fenton-like oxidation of phenylarsonic acid and inorganic arsenic immobilization.","authors":"Wei Liu, Fengfeng Zhou, Huan Yang, Yunxiao Shi, Yaxin Qin, Hongwei Sun, Lizhi Zhang","doi":"10.1016/j.jhazmat.2024.136171","DOIUrl":null,"url":null,"abstract":"<p><p>Herein, copper sulfide (CuS) was introduced to the Fenton-like (Fe(III)/H<sub>2</sub>O<sub>2</sub>) system for the efficient removal of phenylarsonic acid (PAA). Results of reactive oxygen and Fe/Cu species showed that CuS preferentially reacted with Fe(III) and H<sub>2</sub>O<sub>2</sub> to generate Cu(I) and superoxide anion (•O<sub>2</sub><sup>-</sup>). These reductive species could efficiently promote the Fe(III)/Fe(II) and Cu(II)/Cu(I) cycles, and are beneficial to the sequential Fenton reaction to generate •OH. The organoic/inorganic arsenic species detected in the CuS/Fe(III)/H<sub>2</sub>O<sub>2</sub> system confirmed that PAA was oxidized by •OH to hydroxylated organoarsenic and phenolic intermediates, which were further mineralized to oxalate and formic acid. Meanwhile, the inorganic As(III)/As(V) released during PAA degradation were efficiently immobilized by CuS. The PAA removal efficiency remained as high as 92.9 % after 5 cycles of the CuS-mediated Fenton-like process. These results demonstrate an innovative method for the treatment of organoarsenic-contaminated water, and provide new insights into the enhanced Fenton-like process utilizing sulfide minerals.</p>","PeriodicalId":94082,"journal":{"name":"Journal of hazardous materials","volume":"480 ","pages":"136171"},"PeriodicalIF":0.0000,"publicationDate":"2024-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of hazardous materials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.jhazmat.2024.136171","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/10/16 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Herein, copper sulfide (CuS) was introduced to the Fenton-like (Fe(III)/H2O2) system for the efficient removal of phenylarsonic acid (PAA). Results of reactive oxygen and Fe/Cu species showed that CuS preferentially reacted with Fe(III) and H2O2 to generate Cu(I) and superoxide anion (•O2-). These reductive species could efficiently promote the Fe(III)/Fe(II) and Cu(II)/Cu(I) cycles, and are beneficial to the sequential Fenton reaction to generate •OH. The organoic/inorganic arsenic species detected in the CuS/Fe(III)/H2O2 system confirmed that PAA was oxidized by •OH to hydroxylated organoarsenic and phenolic intermediates, which were further mineralized to oxalate and formic acid. Meanwhile, the inorganic As(III)/As(V) released during PAA degradation were efficiently immobilized by CuS. The PAA removal efficiency remained as high as 92.9 % after 5 cycles of the CuS-mediated Fenton-like process. These results demonstrate an innovative method for the treatment of organoarsenic-contaminated water, and provide new insights into the enhanced Fenton-like process utilizing sulfide minerals.

CuS 实现了苯胂酸的高效芬顿式氧化和无机砷固定。
在此,硫化铜(CuS)被引入到类似芬顿(Fe(III)/H2O2)的体系中,以高效去除苯胂酸(PAA)。活性氧和铁/铜物种的研究结果表明,CuS 优先与 Fe(III) 和 H2O2 反应生成 Cu(I) 和超氧阴离子 (-O2-)。这些还原物种可有效促进 Fe(III)/Fe(II) 和 Cu(II)/Cu(I) 循环,并有利于 Fenton 顺序反应生成 -OH。在 CuS/Fe(III)/H2O2 体系中检测到的有机砷/无机砷物种证实 PAA 被 -OH 氧化成羟基化的有机砷和酚类中间产物,并进一步矿化成草酸和甲酸。同时,PAA 降解过程中释放的无机砷(III)/砷(V)被 CuS 有效固定。在 CuS 介导的类芬顿过程中,经过 5 个循环后,PAA 的去除率仍高达 92.9%。这些结果展示了一种处理有机砷污染水的创新方法,并为利用硫化物矿物质增强类芬顿过程提供了新的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信