{"title":"Quantitative Evaluation of Human Lens and Lens Capsule Elasticity by Optical Coherence Elastography Based on a Rayleigh Wave Model","authors":"Gang Shi, Yubao Zhang, Yidi Wang, Sizhu Ai, Chaozhong Zhang, Xingdao He, Xinhe Zheng","doi":"10.1002/jbio.202400322","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Evaluating the biomechanical properties of the lens and lens capsule is important for the clinical diagnosis and treatment of age-related cataracts and presbyopia. In this study, we developed an optical coherent elastography technique to assess the elasticity of the lens and lens capsule in the human eye. With age, the mean Young's modulus of the lens increased from 12.28 ± 0.87 kPa to 18.59 ± 1.45 kPa, and the lens capsule increased from 6.33 ± 0.36 kPa to 13.33 ± 0.74 kPa. The results showed that the Young's modulus of the lens capsule and lens increased with age, with the Young's modulus of the lens significantly higher than that of the lens capsule. This study reports the assessment of the elasticity of the human lens and lens capsule by the OCE technique, indicating that it may provide a potential clinical tool for advancing research on diseases affecting the lens.</p>\n </div>","PeriodicalId":184,"journal":{"name":"Journal of Biophotonics","volume":"17 12","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2024-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biophotonics","FirstCategoryId":"101","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jbio.202400322","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Evaluating the biomechanical properties of the lens and lens capsule is important for the clinical diagnosis and treatment of age-related cataracts and presbyopia. In this study, we developed an optical coherent elastography technique to assess the elasticity of the lens and lens capsule in the human eye. With age, the mean Young's modulus of the lens increased from 12.28 ± 0.87 kPa to 18.59 ± 1.45 kPa, and the lens capsule increased from 6.33 ± 0.36 kPa to 13.33 ± 0.74 kPa. The results showed that the Young's modulus of the lens capsule and lens increased with age, with the Young's modulus of the lens significantly higher than that of the lens capsule. This study reports the assessment of the elasticity of the human lens and lens capsule by the OCE technique, indicating that it may provide a potential clinical tool for advancing research on diseases affecting the lens.
期刊介绍:
The first international journal dedicated to publishing reviews and original articles from this exciting field, the Journal of Biophotonics covers the broad range of research on interactions between light and biological material. The journal offers a platform where the physicist communicates with the biologist and where the clinical practitioner learns about the latest tools for the diagnosis of diseases. As such, the journal is highly interdisciplinary, publishing cutting edge research in the fields of life sciences, medicine, physics, chemistry, and engineering. The coverage extends from fundamental research to specific developments, while also including the latest applications.