A Memristive Spiking Neural Network Circuit for Bio-inspired Navigation Based on Spatial Cognitive Mechanisms.

Zhanfei Chen, Xiaoping Wang, Zilu Wang, Chao Yang, Tingwen Huang, Jingang Lai, Zhigang Zeng
{"title":"A Memristive Spiking Neural Network Circuit for Bio-inspired Navigation Based on Spatial Cognitive Mechanisms.","authors":"Zhanfei Chen, Xiaoping Wang, Zilu Wang, Chao Yang, Tingwen Huang, Jingang Lai, Zhigang Zeng","doi":"10.1109/TBCAS.2024.3480272","DOIUrl":null,"url":null,"abstract":"<p><p>Cognitive navigation, a high-level and crucial function for organisms' survival in nature, enables autonomous exploration and navigation within the environment. However, most existing works for bio-inspired navigation are implemented with non-neuromorphic computing. This work proposes a bio-inspired memristive spiking neural network (SNN) circuit for goal-oriented navigation, capable of online decision-making through reward-based learning. The circuit comprises three primary modules. The place cell module encodes the agent's spatial position in real-time through Poisson spiking; the action cell module determines the direction of subsequent movement; and the reward-based learning module provides a bio-inspired learning method adaptive to delayed and sparse rewards. To facilitate practical application, the entire SNN is quantized and deployed on a real memristive hardware platform, achieving about a 21× reduction in energy consumption compared to a typical digital acceleration system in the forward computing phase. This work offers an implementation idea of neuromorphic solution for robotic navigation application in low-power scenarios.</p>","PeriodicalId":94031,"journal":{"name":"IEEE transactions on biomedical circuits and systems","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE transactions on biomedical circuits and systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TBCAS.2024.3480272","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Cognitive navigation, a high-level and crucial function for organisms' survival in nature, enables autonomous exploration and navigation within the environment. However, most existing works for bio-inspired navigation are implemented with non-neuromorphic computing. This work proposes a bio-inspired memristive spiking neural network (SNN) circuit for goal-oriented navigation, capable of online decision-making through reward-based learning. The circuit comprises three primary modules. The place cell module encodes the agent's spatial position in real-time through Poisson spiking; the action cell module determines the direction of subsequent movement; and the reward-based learning module provides a bio-inspired learning method adaptive to delayed and sparse rewards. To facilitate practical application, the entire SNN is quantized and deployed on a real memristive hardware platform, achieving about a 21× reduction in energy consumption compared to a typical digital acceleration system in the forward computing phase. This work offers an implementation idea of neuromorphic solution for robotic navigation application in low-power scenarios.

基于空间认知机制的生物启发导航记忆性尖峰神经网络电路
认知导航是生物在自然界中生存的高级关键功能,可实现在环境中的自主探索和导航。然而,大多数现有的生物启发导航工作都是通过非超构计算实现的。本研究提出了一种用于目标导向导航的生物启发记忆尖峰神经网络(SNN)电路,能够通过基于奖励的学习进行在线决策。该电路由三个主要模块组成。位置单元模块通过泊松尖峰实时编码代理的空间位置;动作单元模块决定后续运动的方向;基于奖励的学习模块提供一种生物启发的学习方法,以适应延迟和稀疏的奖励。为了便于实际应用,整个 SNN 被量化并部署在真正的忆阻硬件平台上,在前向计算阶段与典型的数字加速系统相比,能耗降低了约 21 倍。这项工作为低功耗场景下的机器人导航应用提供了神经形态解决方案的实现思路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信