{"title":"A Memristive Spiking Neural Network Circuit for Bio-inspired Navigation Based on Spatial Cognitive Mechanisms.","authors":"Zhanfei Chen, Xiaoping Wang, Zilu Wang, Chao Yang, Tingwen Huang, Jingang Lai, Zhigang Zeng","doi":"10.1109/TBCAS.2024.3480272","DOIUrl":null,"url":null,"abstract":"<p><p>Cognitive navigation, a high-level and crucial function for organisms' survival in nature, enables autonomous exploration and navigation within the environment. However, most existing works for bio-inspired navigation are implemented with non-neuromorphic computing. This work proposes a bio-inspired memristive spiking neural network (SNN) circuit for goal-oriented navigation, capable of online decision-making through reward-based learning. The circuit comprises three primary modules. The place cell module encodes the agent's spatial position in real-time through Poisson spiking; the action cell module determines the direction of subsequent movement; and the reward-based learning module provides a bio-inspired learning method adaptive to delayed and sparse rewards. To facilitate practical application, the entire SNN is quantized and deployed on a real memristive hardware platform, achieving about a 21× reduction in energy consumption compared to a typical digital acceleration system in the forward computing phase. This work offers an implementation idea of neuromorphic solution for robotic navigation application in low-power scenarios.</p>","PeriodicalId":94031,"journal":{"name":"IEEE transactions on biomedical circuits and systems","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE transactions on biomedical circuits and systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TBCAS.2024.3480272","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Cognitive navigation, a high-level and crucial function for organisms' survival in nature, enables autonomous exploration and navigation within the environment. However, most existing works for bio-inspired navigation are implemented with non-neuromorphic computing. This work proposes a bio-inspired memristive spiking neural network (SNN) circuit for goal-oriented navigation, capable of online decision-making through reward-based learning. The circuit comprises three primary modules. The place cell module encodes the agent's spatial position in real-time through Poisson spiking; the action cell module determines the direction of subsequent movement; and the reward-based learning module provides a bio-inspired learning method adaptive to delayed and sparse rewards. To facilitate practical application, the entire SNN is quantized and deployed on a real memristive hardware platform, achieving about a 21× reduction in energy consumption compared to a typical digital acceleration system in the forward computing phase. This work offers an implementation idea of neuromorphic solution for robotic navigation application in low-power scenarios.