Abhimanyu S Ahuja, Alfredo A Paredes Iii, Mallory L S Eisel, Sejal Kodwani, Isabella V Wagner, Darby D Miller, Syril Dorairaj
{"title":"Applications of Artificial Intelligence in Cataract Surgery: A Review.","authors":"Abhimanyu S Ahuja, Alfredo A Paredes Iii, Mallory L S Eisel, Sejal Kodwani, Isabella V Wagner, Darby D Miller, Syril Dorairaj","doi":"10.2147/OPTH.S489054","DOIUrl":null,"url":null,"abstract":"<p><p>Cataract surgery is one of the most performed procedures worldwide, and cataracts are rising in prevalence in our aging population. With the increasing utilization of artificial intelligence (AI) in the medical field, we aimed to understand the extent of present AI applications in ophthalmic microsurgery, specifically cataract surgery. We conducted a literature search on PubMed and Google Scholar using keywords related to the application of AI in cataract surgery and included relevant articles published since 2010 in our review. The literature search yielded information on AI mechanisms such as machine learning (ML), deep learning (DL), and convolutional neural networks (CNN) as they are being incorporated into pre-operative, intraoperative, and post-operative stages of cataract surgery. AI is currently integrated in the pre-operative stage of cataract surgery to calculate intraocular lens (IOL) power and diagnose cataracts with slit-lamp microscopy and retinal imaging. During the intraoperative stage, AI has been applied to risk calculation, tracking surgical workflow, multimodal imaging data analysis, and instrument location via the use of \"smart instruments\". AI is also involved in predicting post-operative complications, such as posterior capsular opacification and intraocular lens dislocation, and organizing follow-up patient care. Challenges such as limited imaging dataset availability, unstandardized deep learning analysis metrics, and lack of generalizability to novel datasets currently present obstacles to the enhanced application of AI in cataract surgery. Upon addressing these barriers in upcoming research, AI stands to improve cataract screening accessibility, junior physician training, and identification of surgical complications through future applications of AI in cataract surgery.</p>","PeriodicalId":93945,"journal":{"name":"Clinical ophthalmology (Auckland, N.Z.)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11492897/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Clinical ophthalmology (Auckland, N.Z.)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2147/OPTH.S489054","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Cataract surgery is one of the most performed procedures worldwide, and cataracts are rising in prevalence in our aging population. With the increasing utilization of artificial intelligence (AI) in the medical field, we aimed to understand the extent of present AI applications in ophthalmic microsurgery, specifically cataract surgery. We conducted a literature search on PubMed and Google Scholar using keywords related to the application of AI in cataract surgery and included relevant articles published since 2010 in our review. The literature search yielded information on AI mechanisms such as machine learning (ML), deep learning (DL), and convolutional neural networks (CNN) as they are being incorporated into pre-operative, intraoperative, and post-operative stages of cataract surgery. AI is currently integrated in the pre-operative stage of cataract surgery to calculate intraocular lens (IOL) power and diagnose cataracts with slit-lamp microscopy and retinal imaging. During the intraoperative stage, AI has been applied to risk calculation, tracking surgical workflow, multimodal imaging data analysis, and instrument location via the use of "smart instruments". AI is also involved in predicting post-operative complications, such as posterior capsular opacification and intraocular lens dislocation, and organizing follow-up patient care. Challenges such as limited imaging dataset availability, unstandardized deep learning analysis metrics, and lack of generalizability to novel datasets currently present obstacles to the enhanced application of AI in cataract surgery. Upon addressing these barriers in upcoming research, AI stands to improve cataract screening accessibility, junior physician training, and identification of surgical complications through future applications of AI in cataract surgery.