Charting the course of Sargassum: Incorporating nonlinear elastic interactions and life cycles in the Maxey-Riley model.

IF 2.2 Q2 MULTIDISCIPLINARY SCIENCES
PNAS nexus Pub Date : 2024-10-08 eCollection Date: 2024-10-01 DOI:10.1093/pnasnexus/pgae451
Gage Bonner, F J Beron-Vera, M J Olascoaga
{"title":"Charting the course of <i>Sargassum</i>: Incorporating nonlinear elastic interactions and life cycles in the Maxey-Riley model.","authors":"Gage Bonner, F J Beron-Vera, M J Olascoaga","doi":"10.1093/pnasnexus/pgae451","DOIUrl":null,"url":null,"abstract":"<p><p>The surge of pelagic <i>Sargassum</i> in the Intra-America Seas, particularly the Caribbean Sea, since the early 2010s has raised significant ecological concerns. This study emphasizes the need for a mechanistic understanding of <i>Sargassum</i> dynamics to elucidate the ecological impacts and uncertainties associated with blooms. By introducing a novel transport model, physical components such as ocean currents and winds are integrated with biological aspects affecting the <i>Sargassum</i> life cycle, including reproduction, grounded in an enhanced Maxey-Riley theory for floating particles. Nonlinear elastic forces among the particles are included to simulate interactions within and among <i>Sargassum</i> rafts. This promotes aggregation, consistent with observations, within oceanic eddies, which facilitate their transport. This cannot be achieved by the so-called leeway approach to transport, which forms the basis of current <i>Sargassum</i> modeling. Using satellite-derived data, the model is validated, outperforming the leeway model. Publicly accessible codes are provided to support further research and ecosystem management efforts. This comprehensive approach is expected to improve predictive capabilities and management strategies regarding <i>Sargassum</i> dynamics in affected regions, thus contributing to a deeper understanding of marine ecosystem dynamics and resilience.</p>","PeriodicalId":74468,"journal":{"name":"PNAS nexus","volume":null,"pages":null},"PeriodicalIF":2.2000,"publicationDate":"2024-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11492490/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"PNAS nexus","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/pnasnexus/pgae451","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/10/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

The surge of pelagic Sargassum in the Intra-America Seas, particularly the Caribbean Sea, since the early 2010s has raised significant ecological concerns. This study emphasizes the need for a mechanistic understanding of Sargassum dynamics to elucidate the ecological impacts and uncertainties associated with blooms. By introducing a novel transport model, physical components such as ocean currents and winds are integrated with biological aspects affecting the Sargassum life cycle, including reproduction, grounded in an enhanced Maxey-Riley theory for floating particles. Nonlinear elastic forces among the particles are included to simulate interactions within and among Sargassum rafts. This promotes aggregation, consistent with observations, within oceanic eddies, which facilitate their transport. This cannot be achieved by the so-called leeway approach to transport, which forms the basis of current Sargassum modeling. Using satellite-derived data, the model is validated, outperforming the leeway model. Publicly accessible codes are provided to support further research and ecosystem management efforts. This comprehensive approach is expected to improve predictive capabilities and management strategies regarding Sargassum dynamics in affected regions, thus contributing to a deeper understanding of marine ecosystem dynamics and resilience.

描绘马尾藻的发展轨迹:将非线性弹性相互作用和生命周期纳入 Maxey-Riley 模型。
自 2010 年代初以来,美洲内海(尤其是加勒比海)浮游马尾藻大量繁殖,引起了人们对生态问题的极大关注。这项研究强调了从机制上理解马尾藻动态的必要性,以阐明与藻华相关的生态影响和不确定性。通过引入一个新的传输模型,将洋流和风等物理成分与影响马尾藻生命周期(包括繁殖)的生物因素结合起来,并以增强的浮游粒子 Maxey-Riley 理论为基础。粒子间的非线性弹性力也被纳入其中,以模拟马尾藻筏内部和之间的相互作用。这促进了马尾藻在海洋漩涡中的聚集,与观测结果一致,从而促进了马尾藻的迁移。而目前马尾藻建模所采用的所谓 "回旋输送法 "则无法实现这一目标。利用卫星数据对模型进行了验证,结果表明该模型优于迂回模型。提供了可公开访问的代码,以支持进一步的研究和生态系统管理工作。这种综合方法有望提高对受影响地区马尾藻动态的预测能力和管理策略,从而有助于加深对海洋生态系统动态和恢复能力的理解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.80
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信