Exploring the origins of switching dynamics in a multifunctional reservoir computer.

Frontiers in network physiology Pub Date : 2024-10-03 eCollection Date: 2024-01-01 DOI:10.3389/fnetp.2024.1451812
Andrew Flynn, Andreas Amann
{"title":"Exploring the origins of switching dynamics in a multifunctional reservoir computer.","authors":"Andrew Flynn, Andreas Amann","doi":"10.3389/fnetp.2024.1451812","DOIUrl":null,"url":null,"abstract":"<p><p>The concept of multifunctionality has enabled reservoir computers (RCs), a type of dynamical system that is typically realized as an artificial neural network, to reconstruct multiple attractors simultaneously using the same set of trained weights. However, there are many additional phenomena that arise when training a RC to reconstruct more than one attractor. Previous studies have found that in certain cases, if the RC fails to reconstruct a coexistence of attractors, then it exhibits a form of metastability, whereby, without any external input, the state of the RC switches between different modes of behavior that resemble the properties of the attractors it failed to reconstruct. In this paper, we explore the origins of these switching dynamics in a paradigmatic setting via the \"seeing double\" problem.</p>","PeriodicalId":73092,"journal":{"name":"Frontiers in network physiology","volume":"4 ","pages":"1451812"},"PeriodicalIF":0.0000,"publicationDate":"2024-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11487525/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in network physiology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3389/fnetp.2024.1451812","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The concept of multifunctionality has enabled reservoir computers (RCs), a type of dynamical system that is typically realized as an artificial neural network, to reconstruct multiple attractors simultaneously using the same set of trained weights. However, there are many additional phenomena that arise when training a RC to reconstruct more than one attractor. Previous studies have found that in certain cases, if the RC fails to reconstruct a coexistence of attractors, then it exhibits a form of metastability, whereby, without any external input, the state of the RC switches between different modes of behavior that resemble the properties of the attractors it failed to reconstruct. In this paper, we explore the origins of these switching dynamics in a paradigmatic setting via the "seeing double" problem.

探索多功能水库计算机开关动态的起源。
水库计算机(RC)是一种通常以人工神经网络形式实现的动力系统,多功能性的概念使其能够使用同一组训练过的权重同时重建多个吸引子。然而,在训练蓄水池计算机重建多个吸引子时,还会出现许多其他现象。以往的研究发现,在某些情况下,如果 RC 无法重构一个共存的吸引子,那么它就会表现出一种可迁移性,即在没有任何外部输入的情况下,RC 的状态会在不同的行为模式之间切换,这些行为模式与它未能重构的吸引子的特性相似。在本文中,我们将通过 "看到双重 "问题,在范例环境中探索这些切换动态的起源。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.70
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信