Analysis of single-cell CRISPR perturbations indicates that enhancers predominantly act multiplicatively.

IF 11.1 Q1 CELL BIOLOGY
Cell genomics Pub Date : 2024-11-13 Epub Date: 2024-10-14 DOI:10.1016/j.xgen.2024.100672
Jessica L Zhou, Karthik Guruvayurappan, Shushan Toneyan, Hsiuyi V Chen, Aaron R Chen, Peter Koo, Graham McVicker
{"title":"Analysis of single-cell CRISPR perturbations indicates that enhancers predominantly act multiplicatively.","authors":"Jessica L Zhou, Karthik Guruvayurappan, Shushan Toneyan, Hsiuyi V Chen, Aaron R Chen, Peter Koo, Graham McVicker","doi":"10.1016/j.xgen.2024.100672","DOIUrl":null,"url":null,"abstract":"<p><p>A single gene may have multiple enhancers, but how they work in concert to regulate transcription is poorly understood. To analyze enhancer interactions throughout the genome, we developed a generalized linear modeling framework, GLiMMIRS, for interrogating enhancer effects from single-cell CRISPR experiments. We applied GLiMMIRS to a published dataset and tested for interactions between 46,166 enhancer pairs and corresponding genes, including 264 \"high-confidence\" enhancer pairs. We found that enhancer effects combine multiplicatively but with limited evidence for further interactions. Only 31 enhancer pairs exhibited significant interactions (false discovery rate <0.1), none of which came from the high-confidence set, and 20 were driven by outlier expression values. Additional analyses of a second CRISPR dataset and in silico enhancer perturbations with Enformer both support a multiplicative model of enhancer effects without interactions. Altogether, our results indicate that enhancer interactions are uncommon or have small effects that are difficult to detect.</p>","PeriodicalId":72539,"journal":{"name":"Cell genomics","volume":" ","pages":"100672"},"PeriodicalIF":11.1000,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11605691/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell genomics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.xgen.2024.100672","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/10/14 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

A single gene may have multiple enhancers, but how they work in concert to regulate transcription is poorly understood. To analyze enhancer interactions throughout the genome, we developed a generalized linear modeling framework, GLiMMIRS, for interrogating enhancer effects from single-cell CRISPR experiments. We applied GLiMMIRS to a published dataset and tested for interactions between 46,166 enhancer pairs and corresponding genes, including 264 "high-confidence" enhancer pairs. We found that enhancer effects combine multiplicatively but with limited evidence for further interactions. Only 31 enhancer pairs exhibited significant interactions (false discovery rate <0.1), none of which came from the high-confidence set, and 20 were driven by outlier expression values. Additional analyses of a second CRISPR dataset and in silico enhancer perturbations with Enformer both support a multiplicative model of enhancer effects without interactions. Altogether, our results indicate that enhancer interactions are uncommon or have small effects that are difficult to detect.

对单细胞CRISPR扰动的分析表明,增强子主要起倍增作用。
一个基因可能有多个增强子,但人们对它们如何协同调节转录却知之甚少。为了分析增强子在整个基因组中的相互作用,我们开发了一个广义线性建模框架 GLiMMIRS,用于分析单细胞 CRISPR 实验中的增强子效应。我们将 GLiMMIRS 应用于已发表的数据集,测试了 46,166 个增强子对和相应基因之间的相互作用,其中包括 264 个 "高置信度 "增强子对。我们发现,增强子效应是成倍结合的,但进一步相互作用的证据有限。只有 31 个增强子对表现出显著的相互作用(假发现率
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.10
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信