Pairwise likelihood estimation and limited-information goodness-of-fit test statistics for binary factor analysis models under complex survey sampling.

IF 1.5 3区 心理学 Q3 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS
Haziq Jamil, Irini Moustaki, Chris Skinner
{"title":"Pairwise likelihood estimation and limited-information goodness-of-fit test statistics for binary factor analysis models under complex survey sampling.","authors":"Haziq Jamil, Irini Moustaki, Chris Skinner","doi":"10.1111/bmsp.12358","DOIUrl":null,"url":null,"abstract":"<p><p>This paper discusses estimation and limited-information goodness-of-fit test statistics in factor models for binary data using pairwise likelihood estimation and sampling weights. The paper extends the applicability of pairwise likelihood estimation for factor models with binary data to accommodate complex sampling designs. Additionally, it introduces two key limited-information test statistics: the Pearson chi-squared test and the Wald test. To enhance computational efficiency, the paper introduces modifications to both test statistics. The performance of the estimation and the proposed test statistics under simple random sampling and unequal probability sampling is evaluated using simulated data.</p>","PeriodicalId":55322,"journal":{"name":"British Journal of Mathematical & Statistical Psychology","volume":null,"pages":null},"PeriodicalIF":1.5000,"publicationDate":"2024-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"British Journal of Mathematical & Statistical Psychology","FirstCategoryId":"102","ListUrlMain":"https://doi.org/10.1111/bmsp.12358","RegionNum":3,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

This paper discusses estimation and limited-information goodness-of-fit test statistics in factor models for binary data using pairwise likelihood estimation and sampling weights. The paper extends the applicability of pairwise likelihood estimation for factor models with binary data to accommodate complex sampling designs. Additionally, it introduces two key limited-information test statistics: the Pearson chi-squared test and the Wald test. To enhance computational efficiency, the paper introduces modifications to both test statistics. The performance of the estimation and the proposed test statistics under simple random sampling and unequal probability sampling is evaluated using simulated data.

复杂调查抽样下二元因素分析模型的成对似然估计和有限信息拟合优度检验统计。
本文讨论了使用成对似然估计和抽样权重对二元数据的因子模型进行估计和有限信息拟合优度检验统计。本文扩展了成对似然估计对二元数据因子模型的适用性,以适应复杂的抽样设计。此外,论文还介绍了两个关键的有限信息检验统计量:皮尔逊卡方检验和沃尔德检验。为了提高计算效率,本文对这两个检验统计量进行了修改。本文使用模拟数据评估了在简单随机抽样和不等概率抽样条件下的估计和所提出的检验统计量的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
5.00
自引率
3.80%
发文量
34
审稿时长
>12 weeks
期刊介绍: The British Journal of Mathematical and Statistical Psychology publishes articles relating to areas of psychology which have a greater mathematical or statistical aspect of their argument than is usually acceptable to other journals including: • mathematical psychology • statistics • psychometrics • decision making • psychophysics • classification • relevant areas of mathematics, computing and computer software These include articles that address substantitive psychological issues or that develop and extend techniques useful to psychologists. New models for psychological processes, new approaches to existing data, critiques of existing models and improved algorithms for estimating the parameters of a model are examples of articles which may be favoured.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信