MCMC stopping rules in latent variable modelling.

IF 1.5 3区 心理学 Q3 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS
Sunbeom Kwon, Susu Zhang, Hans Friedrich Köhn, Bo Zhang
{"title":"MCMC stopping rules in latent variable modelling.","authors":"Sunbeom Kwon, Susu Zhang, Hans Friedrich Köhn, Bo Zhang","doi":"10.1111/bmsp.12357","DOIUrl":null,"url":null,"abstract":"<p><p>Bayesian analysis relies heavily on the Markov chain Monte Carlo (MCMC) algorithm to obtain random samples from posterior distributions. In this study, we compare the performance of MCMC stopping rules and provide a guideline for determining the termination point of the MCMC algorithm in latent variable models. In simulation studies, we examine the performance of four different MCMC stopping rules: potential scale reduction factor (PSRF), fixed-width stopping rule, Geweke's diagnostic, and effective sample size. Specifically, we evaluate these stopping rules in the context of the DINA model and the bifactor item response theory model, two commonly used latent variable models in educational and psychological measurement. Our simulation study findings suggest that single-chain approaches outperform multiple-chain approaches in terms of item parameter accuracy. However, when it comes to person parameter estimates, the effect of stopping rules diminishes. We caution against relying solely on the univariate PSRF, which is the most popular method, as it may terminate the algorithm prematurely and produce biased item parameter estimates if the cut-off value is not chosen carefully. Our research offers guidance to practitioners on choosing suitable stopping rules to improve the precision of the MCMC algorithm in models involving latent variables.</p>","PeriodicalId":55322,"journal":{"name":"British Journal of Mathematical & Statistical Psychology","volume":" ","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2024-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"British Journal of Mathematical & Statistical Psychology","FirstCategoryId":"102","ListUrlMain":"https://doi.org/10.1111/bmsp.12357","RegionNum":3,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

Bayesian analysis relies heavily on the Markov chain Monte Carlo (MCMC) algorithm to obtain random samples from posterior distributions. In this study, we compare the performance of MCMC stopping rules and provide a guideline for determining the termination point of the MCMC algorithm in latent variable models. In simulation studies, we examine the performance of four different MCMC stopping rules: potential scale reduction factor (PSRF), fixed-width stopping rule, Geweke's diagnostic, and effective sample size. Specifically, we evaluate these stopping rules in the context of the DINA model and the bifactor item response theory model, two commonly used latent variable models in educational and psychological measurement. Our simulation study findings suggest that single-chain approaches outperform multiple-chain approaches in terms of item parameter accuracy. However, when it comes to person parameter estimates, the effect of stopping rules diminishes. We caution against relying solely on the univariate PSRF, which is the most popular method, as it may terminate the algorithm prematurely and produce biased item parameter estimates if the cut-off value is not chosen carefully. Our research offers guidance to practitioners on choosing suitable stopping rules to improve the precision of the MCMC algorithm in models involving latent variables.

潜变量建模中的 MCMC 停止规则
贝叶斯分析在很大程度上依赖于马尔科夫链蒙特卡洛(MCMC)算法来从后验分布中获取随机样本。在本研究中,我们比较了 MCMC 停止规则的性能,并为确定潜变量模型中 MCMC 算法的终止点提供了指导。在模拟研究中,我们考察了四种不同 MCMC 停止规则的性能:潜在规模缩小因子(PSRF)、固定宽度停止规则、Geweke 诊断和有效样本量。具体来说,我们在 DINA 模型和双因素项目反应理论模型(教育和心理测量中常用的两个潜变量模型)的背景下对这些停止规则进行了评估。我们的模拟研究结果表明,就项目参数准确性而言,单链方法优于多链方法。然而,当涉及到人的参数估计时,停止规则的效果就会减弱。我们提醒大家不要仅仅依赖单变量 PSRF(这是最流行的方法),因为如果不仔细选择截止值,它可能会过早终止算法,并产生有偏差的项目参数估计。我们的研究为实践者提供了指导,帮助他们选择合适的停止规则,以提高涉及潜变量模型的 MCMC 算法的精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
5.00
自引率
3.80%
发文量
34
审稿时长
>12 weeks
期刊介绍: The British Journal of Mathematical and Statistical Psychology publishes articles relating to areas of psychology which have a greater mathematical or statistical aspect of their argument than is usually acceptable to other journals including: • mathematical psychology • statistics • psychometrics • decision making • psychophysics • classification • relevant areas of mathematics, computing and computer software These include articles that address substantitive psychological issues or that develop and extend techniques useful to psychologists. New models for psychological processes, new approaches to existing data, critiques of existing models and improved algorithms for estimating the parameters of a model are examples of articles which may be favoured.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信