Exploring the genetic landscape of the brain-heart axis: A comprehensive analysis of pleiotropic effects between heart disease and psychiatric disorders
Qifeng Song , Cheng Zhang , Wei Wang , Cihan Wang , Chenlong Yi
{"title":"Exploring the genetic landscape of the brain-heart axis: A comprehensive analysis of pleiotropic effects between heart disease and psychiatric disorders","authors":"Qifeng Song , Cheng Zhang , Wei Wang , Cihan Wang , Chenlong Yi","doi":"10.1016/j.pnpbp.2024.111172","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><div>The genetic links between heart disease and psychiatric disorders are complex and not well understood. This study uses genome-wide association studies (GWAS) and advanced multilevel analyses to explore these connections.</div></div><div><h3>Methods</h3><div>We analyzed GWAS data from seven psychiatric disorders and five types of heart disease. Genetic correlations and overlaps were examined using linkage disequilibrium score regression (LDSC), high-definition likelihood (HDL), and Genetic analysis incorporating Pleiotropy and Annotation (GPA). Pleiotropic single-nucleotide variations (SNVs) were identified with pleiotropic analysis under the composite null hypothesis (PLACO) and annotated via Functional mapping and annotation of genetic associations (FUMA). Potential pleiotropic genes were identified using Multi-marker Analysis of GenoMic Annotation (MAGMA) and Summary data-based Mendelian Randomization (SMR).</div></div><div><h3>Results</h3><div>Among 35 trait pairs, 32 showed significant genetic correlations or overlaps. PLACO identified 15,077 SNVs, with 287 recognized as pleiotropic loci and 20 colocalization sites. MAGMA and SMR revealed 75 potential pleiotropic genes involved in diverse pathways, including cancer, neurodevelopment, and cellular organization. Mouse Genome Informatics (MGI) queries provided evidence linking multiple genes to heart or psychiatric disorders.</div></div><div><h3>Conclusions</h3><div>This analysis reveals loci and genes with pleiotropic effects between heart disease and psychiatric disorders, highlighting shared biological pathways. These findings illuminate the genetic mechanisms underlying the brain-heart axis and suggest shared biological foundations for these conditions, offering potential targets for future prevention and treatment strategies.</div></div>","PeriodicalId":54549,"journal":{"name":"Progress in Neuro-Psychopharmacology & Biological Psychiatry","volume":"136 ","pages":"Article 111172"},"PeriodicalIF":5.3000,"publicationDate":"2024-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in Neuro-Psychopharmacology & Biological Psychiatry","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0278584624002409","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Background
The genetic links between heart disease and psychiatric disorders are complex and not well understood. This study uses genome-wide association studies (GWAS) and advanced multilevel analyses to explore these connections.
Methods
We analyzed GWAS data from seven psychiatric disorders and five types of heart disease. Genetic correlations and overlaps were examined using linkage disequilibrium score regression (LDSC), high-definition likelihood (HDL), and Genetic analysis incorporating Pleiotropy and Annotation (GPA). Pleiotropic single-nucleotide variations (SNVs) were identified with pleiotropic analysis under the composite null hypothesis (PLACO) and annotated via Functional mapping and annotation of genetic associations (FUMA). Potential pleiotropic genes were identified using Multi-marker Analysis of GenoMic Annotation (MAGMA) and Summary data-based Mendelian Randomization (SMR).
Results
Among 35 trait pairs, 32 showed significant genetic correlations or overlaps. PLACO identified 15,077 SNVs, with 287 recognized as pleiotropic loci and 20 colocalization sites. MAGMA and SMR revealed 75 potential pleiotropic genes involved in diverse pathways, including cancer, neurodevelopment, and cellular organization. Mouse Genome Informatics (MGI) queries provided evidence linking multiple genes to heart or psychiatric disorders.
Conclusions
This analysis reveals loci and genes with pleiotropic effects between heart disease and psychiatric disorders, highlighting shared biological pathways. These findings illuminate the genetic mechanisms underlying the brain-heart axis and suggest shared biological foundations for these conditions, offering potential targets for future prevention and treatment strategies.
期刊介绍:
Progress in Neuro-Psychopharmacology & Biological Psychiatry is an international and multidisciplinary journal which aims to ensure the rapid publication of authoritative reviews and research papers dealing with experimental and clinical aspects of neuro-psychopharmacology and biological psychiatry. Issues of the journal are regularly devoted wholly in or in part to a topical subject.
Progress in Neuro-Psychopharmacology & Biological Psychiatry does not publish work on the actions of biological extracts unless the pharmacological active molecular substrate and/or specific receptor binding properties of the extract compounds are elucidated.