Thiago Carlisbino, Brodsky Dantas Macedo de Farias, Fernando Antonio Sedor, Cesar Leandro Schultz
{"title":"Bone microstructure analyses in ontogenetic series of Mesosaurus tenuidens from the early Permian of Brazil.","authors":"Thiago Carlisbino, Brodsky Dantas Macedo de Farias, Fernando Antonio Sedor, Cesar Leandro Schultz","doi":"10.1002/ar.25591","DOIUrl":null,"url":null,"abstract":"<p><p>Osteohistological evidence is widely used to infer paleobiological traits of fossil vertebrates, such as ontogeny and growth rates. Mesosaurs, an enigmatic group of aquatic reptiles from the early Permian, are the most well-known Paleozoic amniotes from Africa and South America. Their fossils are abundant in South America, ranging from the central-west region of Brazil to the southernmost areas, as well as parts of Paraguay and Uruguay. In this contribution, we examined the bone microstructure of Mesosaurus tenuidens by analyzing thin sections of axial and appendicular elements of several specimens collected from various Brazilian sites. The microstructure of the bones showed minimal histological variability among elements, predominantly composed of parallel-fibered tissues, indicating slow growth rhythm, along with increased bone density attributed to pachyosteosclerosis. The cortical area consists of poorly vascularized parallel-fibered bone tissue, which was interrupted by multiple cyclical growth marks, some of them being supernumerary, suggesting a strong influence of seasonality. Moreover, the organization of growth marks suggests distinct life history trajectories among individuals collected from different outcrops, reflecting environmental heterogeneity throughout the basin. Internally, the endosteal domain exhibits greater vascularization compared to the cortices and frequently contained calcified cartilage. In the ontogenetic series, there was a progressive filling of the medullary region from small to large individuals. The presence of the External Fundamental System (a proxy indicating somatic maturity) was observed in femora and ribs, suggesting that determinate growth was already occurring in Permian mesosaurs and may not be an exclusive specialization of crown amniotes.</p>","PeriodicalId":50965,"journal":{"name":"Anatomical Record-Advances in Integrative Anatomy and Evolutionary Biology","volume":null,"pages":null},"PeriodicalIF":1.8000,"publicationDate":"2024-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Anatomical Record-Advances in Integrative Anatomy and Evolutionary Biology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/ar.25591","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ANATOMY & MORPHOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Osteohistological evidence is widely used to infer paleobiological traits of fossil vertebrates, such as ontogeny and growth rates. Mesosaurs, an enigmatic group of aquatic reptiles from the early Permian, are the most well-known Paleozoic amniotes from Africa and South America. Their fossils are abundant in South America, ranging from the central-west region of Brazil to the southernmost areas, as well as parts of Paraguay and Uruguay. In this contribution, we examined the bone microstructure of Mesosaurus tenuidens by analyzing thin sections of axial and appendicular elements of several specimens collected from various Brazilian sites. The microstructure of the bones showed minimal histological variability among elements, predominantly composed of parallel-fibered tissues, indicating slow growth rhythm, along with increased bone density attributed to pachyosteosclerosis. The cortical area consists of poorly vascularized parallel-fibered bone tissue, which was interrupted by multiple cyclical growth marks, some of them being supernumerary, suggesting a strong influence of seasonality. Moreover, the organization of growth marks suggests distinct life history trajectories among individuals collected from different outcrops, reflecting environmental heterogeneity throughout the basin. Internally, the endosteal domain exhibits greater vascularization compared to the cortices and frequently contained calcified cartilage. In the ontogenetic series, there was a progressive filling of the medullary region from small to large individuals. The presence of the External Fundamental System (a proxy indicating somatic maturity) was observed in femora and ribs, suggesting that determinate growth was already occurring in Permian mesosaurs and may not be an exclusive specialization of crown amniotes.