{"title":"Blood L-cystine levels positively related to increased risk of hypertension.","authors":"Haijun Chen, Yalan Deng, Hailing Zhou, Wenzhong Wu, Jinhua Bao, Deyou Cao, Yuze Li, Yingmei Feng","doi":"10.1111/jch.14902","DOIUrl":null,"url":null,"abstract":"<p><p>Hypertension is one component of metabolic syndrome (MetS). Here, the study evaluated hypertension-associated metabolites in relation to other MetS components. Fasting plasma samples were collected from 22 hypertensive and 63 normotensive subjects for non-targeted metabolomics. Compared with normotensive subjects, hypertensive patients were more diabetic (6.3% vs. 36.4%) and had dyslipidemia (27.0% vs. 63.6%) (both p < .05). By non-targeted metabolomics, 758 metabolites in 22 classes were identified and 56 were differentially regulated between hypertensive and normotensive groups. Amongst these 56 metabolites, receiver operating characteristic analysis showed that 14 had an area under the curve above 0.6. Multivariate-adjusted logistic regression analysis demonstrated that per one-fold increase of L-glutmatic acid, L-cystine, (9S,10E,12Z,15Z)-9-Hydroxy-10,12,15-octadecatrienoic acid, deoxyribose 5-phosphate, and falcarinolone, the odds ratios were 3.64, 4.61, 0.26, 0.26, and 0.37 for having the risk of hypertension, respectively. Of five metabolites, by Spearman's correlation analysis, only L-glutmatic acid and L-cystine levels were positively associated with systolic and diastolic blood pressure (all p < .05). Spearman's correlation analysis further revealed that L-glutmatic acid levels were positively correlated with to body mass index (BMI), fasting blood glucose, and serum triglyceride but negatively associated with HDL-c (all p < .05) whereas L-cystine levels were not related to any of these components (p ≥ .13). Multivariate-adjusted linear regression analysis confirmed the positive correlation between L-cystine levels and systolic or diastolic blood pressure (β = 2.66 for SBP; β = 2.50 for DBP; both p < .05). In conclusion, L-cystine could be a potent metabolite for increased risk of hypertension.</p>","PeriodicalId":50237,"journal":{"name":"Journal of Clinical Hypertension","volume":" ","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2024-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Clinical Hypertension","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1111/jch.14902","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PERIPHERAL VASCULAR DISEASE","Score":null,"Total":0}
引用次数: 0
Abstract
Hypertension is one component of metabolic syndrome (MetS). Here, the study evaluated hypertension-associated metabolites in relation to other MetS components. Fasting plasma samples were collected from 22 hypertensive and 63 normotensive subjects for non-targeted metabolomics. Compared with normotensive subjects, hypertensive patients were more diabetic (6.3% vs. 36.4%) and had dyslipidemia (27.0% vs. 63.6%) (both p < .05). By non-targeted metabolomics, 758 metabolites in 22 classes were identified and 56 were differentially regulated between hypertensive and normotensive groups. Amongst these 56 metabolites, receiver operating characteristic analysis showed that 14 had an area under the curve above 0.6. Multivariate-adjusted logistic regression analysis demonstrated that per one-fold increase of L-glutmatic acid, L-cystine, (9S,10E,12Z,15Z)-9-Hydroxy-10,12,15-octadecatrienoic acid, deoxyribose 5-phosphate, and falcarinolone, the odds ratios were 3.64, 4.61, 0.26, 0.26, and 0.37 for having the risk of hypertension, respectively. Of five metabolites, by Spearman's correlation analysis, only L-glutmatic acid and L-cystine levels were positively associated with systolic and diastolic blood pressure (all p < .05). Spearman's correlation analysis further revealed that L-glutmatic acid levels were positively correlated with to body mass index (BMI), fasting blood glucose, and serum triglyceride but negatively associated with HDL-c (all p < .05) whereas L-cystine levels were not related to any of these components (p ≥ .13). Multivariate-adjusted linear regression analysis confirmed the positive correlation between L-cystine levels and systolic or diastolic blood pressure (β = 2.66 for SBP; β = 2.50 for DBP; both p < .05). In conclusion, L-cystine could be a potent metabolite for increased risk of hypertension.
期刊介绍:
The Journal of Clinical Hypertension is a peer-reviewed, monthly publication that serves internists, cardiologists, nephrologists, endocrinologists, hypertension specialists, primary care practitioners, pharmacists and all professionals interested in hypertension by providing objective, up-to-date information and practical recommendations on the full range of clinical aspects of hypertension. Commentaries and columns by experts in the field provide further insights into our original research articles as well as on major articles published elsewhere. Major guidelines for the management of hypertension are also an important feature of the Journal. Through its partnership with the World Hypertension League, JCH will include a new focus on hypertension and public health, including major policy issues, that features research and reviews related to disease characteristics and management at the population level.