Martin Vinck, Cem Uran, Jarrod R Dowdall, Brian Rummell, Andres Canales-Johnson
{"title":"Large-scale interactions in predictive processing: oscillatory versus transient dynamics.","authors":"Martin Vinck, Cem Uran, Jarrod R Dowdall, Brian Rummell, Andres Canales-Johnson","doi":"10.1016/j.tics.2024.09.013","DOIUrl":null,"url":null,"abstract":"<p><p>How do the two main types of neural dynamics, aperiodic transients and oscillations, contribute to the interactions between feedforward (FF) and feedback (FB) pathways in sensory inference and predictive processing? We discuss three theoretical perspectives. First, we critically evaluate the theory that gamma and alpha/beta rhythms play a role in classic hierarchical predictive coding (HPC) by mediating FF and FB communication, respectively. Second, we outline an alternative functional model in which rapid sensory inference is mediated by aperiodic transients, whereas oscillations contribute to the stabilization of neural representations over time and plasticity processes. Third, we propose that the strong dependence of oscillations on predictability can be explained based on a biologically plausible alternative to classic HPC, namely dendritic HPC.</p>","PeriodicalId":49417,"journal":{"name":"Trends in Cognitive Sciences","volume":" ","pages":""},"PeriodicalIF":16.7000,"publicationDate":"2024-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7616854/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Trends in Cognitive Sciences","FirstCategoryId":"102","ListUrlMain":"https://doi.org/10.1016/j.tics.2024.09.013","RegionNum":1,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BEHAVIORAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
How do the two main types of neural dynamics, aperiodic transients and oscillations, contribute to the interactions between feedforward (FF) and feedback (FB) pathways in sensory inference and predictive processing? We discuss three theoretical perspectives. First, we critically evaluate the theory that gamma and alpha/beta rhythms play a role in classic hierarchical predictive coding (HPC) by mediating FF and FB communication, respectively. Second, we outline an alternative functional model in which rapid sensory inference is mediated by aperiodic transients, whereas oscillations contribute to the stabilization of neural representations over time and plasticity processes. Third, we propose that the strong dependence of oscillations on predictability can be explained based on a biologically plausible alternative to classic HPC, namely dendritic HPC.
期刊介绍:
Essential reading for those working directly in the cognitive sciences or in related specialist areas, Trends in Cognitive Sciences provides an instant overview of current thinking for scientists, students and teachers who want to keep up with the latest developments in the cognitive sciences. The journal brings together research in psychology, artificial intelligence, linguistics, philosophy, computer science and neuroscience. Trends in Cognitive Sciences provides a platform for the interaction of these disciplines and the evolution of cognitive science as an independent field of study.