Molecular mechanism of flower colour formation in Rhododendron simsii Planchon revealed by integration of microRNAome and RNAomics.

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
ACS Applied Bio Materials Pub Date : 2024-10-14 eCollection Date: 2024-10-01 DOI:10.1093/aobpla/plae053
Jun Fu, Chuanchuan Tian, Xuchun Wan, Ruibin Hu, Jiaojun Yu, Jialiang Zhang, Shuzhen Wang
{"title":"Molecular mechanism of flower colour formation in <i>Rhododendron simsii</i> Planchon revealed by integration of microRNAome and RNAomics.","authors":"Jun Fu, Chuanchuan Tian, Xuchun Wan, Ruibin Hu, Jiaojun Yu, Jialiang Zhang, Shuzhen Wang","doi":"10.1093/aobpla/plae053","DOIUrl":null,"url":null,"abstract":"<p><p>Systems-wide understanding of gene expression profile regulating flower colour formation in <i>Rhododendron simsii</i> Planchon is insufficient. In this research, integration analysis of ribonucleic acid (RNA)omics and microRNAome were performed to reveal the molecular mechanism of flower colour formation in three <i>R. simsii</i> varieties with red, pink and crimson flowers, respectively. Totally, 3129, 5755 and 5295 differentially expressed gene (DEG)s were identified through comparative transcriptome analysis between 'Red variety' and 'Pink variety' (1507 up-regulated and 1622 down-regulated), 'Red variety' and 'Crimson variety' (2148 up-regulated 3607 down-regulated), as well as 'Pink variety' and 'Crimson variety' (2089 up-regulated and 3206 down-regulated), which were involved in processes of 'catalytic activity', 'binding', 'metabolic process' and 'cellular process', as well as pathways of 'metabolic pathways', 'biosynthesis of secondary metabolites', 'plant-pathogen interaction' and 'phenylpropanoid biosynthesis'. A total of 215 miRNAs, containing 153 known miRNAs belonging to 57 families and 62 novel miRNA, were involved in flower colour formation. In particular, 55 miRNAs were significantly differently expressed. Based on miRNA-mRNA regulatory network, ath-miR5658 could affect the synthesis of pelargonidin, cyanidin and delphinidin through downregulating accumulation of anthocyanidin 3-O-glucosyltransferase; ath-miR868-3p could regulate isoflavonoid biosynthesis through downregulating expression of CYP81E1/E7; ath-miR156g regulated the expression of flavonoid 3',5'-hydroxylase; and ath-miR829-5p regulated flavonol synthasein flavonoid biosynthesis process. This research will provide important roles in breeding new varieties with rich flower colour.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11489732/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/aobpla/plae053","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/10/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

Systems-wide understanding of gene expression profile regulating flower colour formation in Rhododendron simsii Planchon is insufficient. In this research, integration analysis of ribonucleic acid (RNA)omics and microRNAome were performed to reveal the molecular mechanism of flower colour formation in three R. simsii varieties with red, pink and crimson flowers, respectively. Totally, 3129, 5755 and 5295 differentially expressed gene (DEG)s were identified through comparative transcriptome analysis between 'Red variety' and 'Pink variety' (1507 up-regulated and 1622 down-regulated), 'Red variety' and 'Crimson variety' (2148 up-regulated 3607 down-regulated), as well as 'Pink variety' and 'Crimson variety' (2089 up-regulated and 3206 down-regulated), which were involved in processes of 'catalytic activity', 'binding', 'metabolic process' and 'cellular process', as well as pathways of 'metabolic pathways', 'biosynthesis of secondary metabolites', 'plant-pathogen interaction' and 'phenylpropanoid biosynthesis'. A total of 215 miRNAs, containing 153 known miRNAs belonging to 57 families and 62 novel miRNA, were involved in flower colour formation. In particular, 55 miRNAs were significantly differently expressed. Based on miRNA-mRNA regulatory network, ath-miR5658 could affect the synthesis of pelargonidin, cyanidin and delphinidin through downregulating accumulation of anthocyanidin 3-O-glucosyltransferase; ath-miR868-3p could regulate isoflavonoid biosynthesis through downregulating expression of CYP81E1/E7; ath-miR156g regulated the expression of flavonoid 3',5'-hydroxylase; and ath-miR829-5p regulated flavonol synthasein flavonoid biosynthesis process. This research will provide important roles in breeding new varieties with rich flower colour.

通过整合微RNA组和RNA组学揭示杜鹃花花色形成的分子机制。
对调控杜鹃花颜色形成的基因表达谱的全系统认识不足。本研究对核糖核酸(RNA)组和微RNA组进行了整合分析,以揭示三个花色分别为红色、粉色和深红色的杜鹃花品种花色形成的分子机制。通过对 "红色品种 "和 "粉色品种"(1507 个上调,1622 个下调)、"红色品种 "和 "深红色品种"(2148 个上调,3607 个下调)的转录组进行比较分析,分别发现了 3129 个、5755 个和 5295 个差异表达基因(DEG)、以及'粉红品种'和'深红品种'(上调 2089 个,下调 3206 个),它们参与了'催化活性'、'结合'、'代谢过程'和'细胞过程'等过程,以及'代谢途径'、'次生代谢物的生物合成'、'植物与病原体的相互作用'和'苯丙类生物合成'等途径。共有215个miRNA参与了花色形成,其中153个已知miRNA属于57个科,62个为新miRNA。其中,55 个 miRNA 的表达存在显著差异。根据miRNA-mRNA调控网络,ath-miR5658可通过下调花青素3-O-葡萄糖基转移酶的积累,影响花色素、花青素和花翠素的合成;ath-miR868-3p可通过下调CYP81E1/E7的表达调控异黄酮的生物合成;ath-miR156g可调控黄酮类化合物3',5'-羟化酶的表达;ath-miR829-5p可调控黄酮类化合物生物合成过程中的黄酮醇合成酶。这项研究将为培育花色丰富的新品种发挥重要作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信