Andrew J Lee, Stephen Carson, Marina I Reyne, Andrew Marshall, Daniel Moody, Danielle M Allen, Pearce Allingham, Ashley Levickas, Arthur Fitzgerald, Stephen H Bell, Jonathan Lock, Jonathon D Coey, Cormac McSparron, Behnam F Nejad, Evan P Troendle, David A Simpson, David G Courtney, Gisli G Einarsson, James P McKenna, Derek J Fairley, Tanya Curran, Jennifer M McKinley, Deirdre F Gilpin, Ken Lemon, John W McGrath, Connor G G Bamford
{"title":"Wastewater monitoring of human and avian influenza A viruses in Northern Ireland: a genomic surveillance study.","authors":"Andrew J Lee, Stephen Carson, Marina I Reyne, Andrew Marshall, Daniel Moody, Danielle M Allen, Pearce Allingham, Ashley Levickas, Arthur Fitzgerald, Stephen H Bell, Jonathan Lock, Jonathon D Coey, Cormac McSparron, Behnam F Nejad, Evan P Troendle, David A Simpson, David G Courtney, Gisli G Einarsson, James P McKenna, Derek J Fairley, Tanya Curran, Jennifer M McKinley, Deirdre F Gilpin, Ken Lemon, John W McGrath, Connor G G Bamford","doi":"10.1016/S2666-5247(24)00175-7","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Influenza A viruses (IAVs) are significant pathogens of humans and other animals. Although endemic in humans and birds, novel IAV strains can emerge, jump species, and cause epidemics, like the latest variant of H5N1. Wastewater-based epidemiology (WBE) has been shown capable of detecting human IAVs. We aimed to assess whether whole-genome sequencing (WGS) of IAVs from wastewater is possible and can be used to discriminate between circulating strains of human and any non-human IAVs, such as those of avian origin.</p><p><strong>Methods: </strong>Using a pan-IAV RT-quantitative PCR assay, six wastewater treatment works (WWTWs) across Northern Ireland were screened from Aug 1 to Dec 5, 2022. A nanopore WGS approach was used to sequence RT-qPCR-positive samples. Phylogenetic analysis of sequences relative to currently circulating human and non-human IAVs was performed. For comparative purposes, clinical data (PCR test results) were supplied by The Regional Virus Laboratory, Belfast Health and Social Care Trust (Belfast, Northern Ireland, UK).</p><p><strong>Findings: </strong>We detected a dynamic IAV signal in wastewater from Sept 5, 2022, onwards across Northern Ireland, which did not show a clear positive relationship with the clinical data obtained for the region. Meta (mixed strain) whole-genome sequences were generated from wastewater samples displaying homology to only human and avian IAV strains. The relative proportion of IAV reads of human versus avian origin differed across time and sample site. A diversity in subtypes and lineages was detected (eg, H1N1, H3N2, and several avian). Avian segment 8 related to those found in recent H5N1 clade 2.3.4.4b was identified.</p><p><strong>Interpretation: </strong>WBE affords a means to monitor circulating human and avian IAV strains and provide crucial genetic information. As such, WBE can provide rapid, cost-effective, year-round One Health surveillance to help control IAV epidemic and pandemic-related threats. However, optimisation of WBE protocols are necessary to ensure observed wastewater signals not only correlate with clinical case data, but yield information on the wider environmental pan-influenz-ome.</p><p><strong>Funding: </strong>Department of Health for Northern Ireland.</p>","PeriodicalId":46633,"journal":{"name":"Lancet Microbe","volume":" ","pages":"100933"},"PeriodicalIF":20.9000,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Lancet Microbe","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/S2666-5247(24)00175-7","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"INFECTIOUS DISEASES","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Influenza A viruses (IAVs) are significant pathogens of humans and other animals. Although endemic in humans and birds, novel IAV strains can emerge, jump species, and cause epidemics, like the latest variant of H5N1. Wastewater-based epidemiology (WBE) has been shown capable of detecting human IAVs. We aimed to assess whether whole-genome sequencing (WGS) of IAVs from wastewater is possible and can be used to discriminate between circulating strains of human and any non-human IAVs, such as those of avian origin.
Methods: Using a pan-IAV RT-quantitative PCR assay, six wastewater treatment works (WWTWs) across Northern Ireland were screened from Aug 1 to Dec 5, 2022. A nanopore WGS approach was used to sequence RT-qPCR-positive samples. Phylogenetic analysis of sequences relative to currently circulating human and non-human IAVs was performed. For comparative purposes, clinical data (PCR test results) were supplied by The Regional Virus Laboratory, Belfast Health and Social Care Trust (Belfast, Northern Ireland, UK).
Findings: We detected a dynamic IAV signal in wastewater from Sept 5, 2022, onwards across Northern Ireland, which did not show a clear positive relationship with the clinical data obtained for the region. Meta (mixed strain) whole-genome sequences were generated from wastewater samples displaying homology to only human and avian IAV strains. The relative proportion of IAV reads of human versus avian origin differed across time and sample site. A diversity in subtypes and lineages was detected (eg, H1N1, H3N2, and several avian). Avian segment 8 related to those found in recent H5N1 clade 2.3.4.4b was identified.
Interpretation: WBE affords a means to monitor circulating human and avian IAV strains and provide crucial genetic information. As such, WBE can provide rapid, cost-effective, year-round One Health surveillance to help control IAV epidemic and pandemic-related threats. However, optimisation of WBE protocols are necessary to ensure observed wastewater signals not only correlate with clinical case data, but yield information on the wider environmental pan-influenz-ome.
Funding: Department of Health for Northern Ireland.
期刊介绍:
The Lancet Microbe is a gold open access journal committed to publishing content relevant to clinical microbiologists worldwide, with a focus on studies that advance clinical understanding, challenge the status quo, and advocate change in health policy.