Addressing the Generalizability of AI in Radiology Using a Novel Data Augmentation Framework with Synthetic Patient Image Data: Proof-of-Concept and External Validation for Classification Tasks in Multiple Sclerosis.
IF 8.1
Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Gianluca Brugnara, Chandrakanth Jayachandran Preetha, Katerina Deike, Robert Haase, Thomas Pinetz, Martha Foltyn-Dumitru, Mustafa A Mahmutoglu, Brigitte Wildemann, Ricarda Diem, Wolfgang Wick, Alexander Radbruch, Martin Bendszus, Hagen Meredig, Aditya Rastogi, Philipp Vollmuth
求助PDF
{"title":"Addressing the Generalizability of AI in Radiology Using a Novel Data Augmentation Framework with Synthetic Patient Image Data: Proof-of-Concept and External Validation for Classification Tasks in Multiple Sclerosis.","authors":"Gianluca Brugnara, Chandrakanth Jayachandran Preetha, Katerina Deike, Robert Haase, Thomas Pinetz, Martha Foltyn-Dumitru, Mustafa A Mahmutoglu, Brigitte Wildemann, Ricarda Diem, Wolfgang Wick, Alexander Radbruch, Martin Bendszus, Hagen Meredig, Aditya Rastogi, Philipp Vollmuth","doi":"10.1148/ryai.230514","DOIUrl":null,"url":null,"abstract":"<p><p>Artificial intelligence (AI) models often face performance drops after deployment to external datasets. This study evaluated the potential of a novel data augmentation framework based on generative adversarial networks (GANs) that creates synthetic patient image data for model training to improve model generalizability. Model development and external testing were performed for a given classification task, namely the detection of new fluid-attenuated inversion recovery lesions at MRI during longitudinal follow-up of patients with multiple sclerosis (MS). An internal dataset of 669 patients with MS (<i>n</i> = 3083 examinations) was used to develop an attention-based network, trained both with and without the inclusion of the GAN-based synthetic data augmentation framework. External testing was performed on 134 patients with MS from a different institution, with MR images acquired using different scanners and protocols than images used during training. Models trained using synthetic data augmentation showed a significant performance improvement when applied on external data (area under the receiver operating characteristic curve [AUC], 83.6% without synthetic data vs 93.3% with synthetic data augmentation; <i>P</i> = .03), achieving comparable results to the internal test set (AUC, 95.0%; <i>P</i> = .53), whereas models without synthetic data augmentation demonstrated a performance drop upon external testing (AUC, 93.8% on internal dataset vs 83.6% on external data; <i>P</i> = .03). Data augmentation with synthetic patient data substantially improved performance of AI models on unseen MRI data and may be extended to other clinical conditions or tasks to mitigate domain shift, limit class imbalance, and enhance the robustness of AI applications in medical imaging. <b>Keywords:</b> Brain, Brain Stem, Multiple Sclerosis, Synthetic Data Augmentation, Generative Adversarial Network <i>Supplemental material is available for this article.</i> © RSNA, 2024.</p>","PeriodicalId":29787,"journal":{"name":"Radiology-Artificial Intelligence","volume":" ","pages":"e230514"},"PeriodicalIF":8.1000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Radiology-Artificial Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1148/ryai.230514","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
引用
批量引用
Abstract
Artificial intelligence (AI) models often face performance drops after deployment to external datasets. This study evaluated the potential of a novel data augmentation framework based on generative adversarial networks (GANs) that creates synthetic patient image data for model training to improve model generalizability. Model development and external testing were performed for a given classification task, namely the detection of new fluid-attenuated inversion recovery lesions at MRI during longitudinal follow-up of patients with multiple sclerosis (MS). An internal dataset of 669 patients with MS (n = 3083 examinations) was used to develop an attention-based network, trained both with and without the inclusion of the GAN-based synthetic data augmentation framework. External testing was performed on 134 patients with MS from a different institution, with MR images acquired using different scanners and protocols than images used during training. Models trained using synthetic data augmentation showed a significant performance improvement when applied on external data (area under the receiver operating characteristic curve [AUC], 83.6% without synthetic data vs 93.3% with synthetic data augmentation; P = .03), achieving comparable results to the internal test set (AUC, 95.0%; P = .53), whereas models without synthetic data augmentation demonstrated a performance drop upon external testing (AUC, 93.8% on internal dataset vs 83.6% on external data; P = .03). Data augmentation with synthetic patient data substantially improved performance of AI models on unseen MRI data and may be extended to other clinical conditions or tasks to mitigate domain shift, limit class imbalance, and enhance the robustness of AI applications in medical imaging. Keywords: Brain, Brain Stem, Multiple Sclerosis, Synthetic Data Augmentation, Generative Adversarial Network Supplemental material is available for this article. © RSNA, 2024.
利用合成患者图像数据的新型数据增强框架解决放射学中人工智能的通用性问题:多发性硬化症的概念验证和外部验证分类任务。
"刚刚接受 "的论文经过同行评审,已被接受在《放射学》上发表:人工智能》上发表。这篇文章在以最终版本发表之前,还将经过校对、排版和校对审核。请注意,在制作最终校对稿的过程中,可能会发现一些可能影响内容的错误。人工智能(AI)模型在部署到外部数据集后往往会面临性能下降的问题。本研究评估了基于生成式对抗网络(GAN)的新型数据增强框架的潜力,该框架可在模型训练期间创建合成患者图像数据,从而提高模型的通用性。研究针对一项特定的分类任务进行了模型开发和外部测试,该任务是在多发性硬化症(MS)患者的纵向随访过程中检测磁共振成像上的新流体增强反转恢复(FLAIR)病灶。669 名多发性硬化症患者(n = 3083 次检查)的内部数据集被用于开发基于注意力的网络,该网络在使用或未使用基于 GAN 的合成数据增强框架的情况下均得到了训练。外部测试是在来自不同机构的 134 名多发性硬化症患者身上进行的,他们使用不同的扫描仪和方案获取磁共振图像,与训练时使用的图像不同。使用合成数据增强训练的模型在应用于外部数据时表现出显著的性能提升(无合成数据时的AUC为83.6%,有合成数据增强时的AUC为93.3%,P = .03),达到了与内部测试集相当的结果(AUC为95.5%,P = .53),而无合成数据增强的模型在外部测试时表现出性能下降(内部数据集的AUC为93.8%,外部数据集的AUC为83.6%,P = .03)。用合成患者数据增强数据大大提高了人工智能模型在未见核磁共振成像数据上的性能,并可扩展到其他临床条件或任务,以减轻领域偏移、限制类不平衡,并增强人工智能在医学成像应用中的稳健性。©RSNA,2024。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
来源期刊
期刊介绍:
Radiology: Artificial Intelligence is a bi-monthly publication that focuses on the emerging applications of machine learning and artificial intelligence in the field of imaging across various disciplines. This journal is available online and accepts multiple manuscript types, including Original Research, Technical Developments, Data Resources, Review articles, Editorials, Letters to the Editor and Replies, Special Reports, and AI in Brief.