{"title":"Comprehensive characterization and resistome analysis of Antarctic Pseudomonas migulae strain CAS19.","authors":"Çiğdem Otur, Sezer Okay, Ömer Konuksever, Oğuzhan Duyar, Yılmaz Kaya, Aslıhan Kurt-Kızıldoğan","doi":"10.1007/s11274-024-04153-1","DOIUrl":null,"url":null,"abstract":"<p><p>Although traditionally considered pristine, Antarctica faces an increasing threat of antibiotic resistance due to human intervention. Here, we obtained a bacterial isolate, the CAS19 strain, from a lake water sample from Ardley Island, Antarctica and characterized it comprehensively. The CAS19 was a psychrotrophic and neutrophilic/alkalitolerant bacterium thriving at temperatures from 15 to 33 °C and pH levels from 6.0 to 9.0. Besides the production of siderophore and indole acetic acid, it also exhibited proteolytic and lipolytic activities. It was identified as Pseudomonas migulae by multilocus (16S rRNA, gyrB, rpoB and rpoD) sequence analysis, and its genome was 6.5 Mbps in length, had 59% GC content, and contained 5,821 coding sequences. The CAS19 was resistant to several antibiotics, including trimethoprim, penicillin, vancomycin, and erythromycin, confirmed by RT-qPCR analysis, with a notable increase in dfr (63-fold), bla (461-fold), vanW (31.7-fold) and macA (24.7-fold) expressions upon antibiotic exposure. Additionally, CAS19 exhibited resistance to heavy metals with an order of Cr(III) = Cu(II) > Ni(II) > Zn(II) > Cd(II), and showed diesel fuel (5%) degradation capacity. Cold-related genes cspA_2 and cspD were overexpressed at 4 and 15 °C, consistent with the cold adaptation mechanism. In conclusion, for the first time an Antarctic P. migulae isolate has been characterized in detail, uncovering a rich resistome repertoir that might be associated with anthropogenic disturbances.</p>","PeriodicalId":23703,"journal":{"name":"World journal of microbiology & biotechnology","volume":"40 11","pages":"347"},"PeriodicalIF":4.0000,"publicationDate":"2024-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"World journal of microbiology & biotechnology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s11274-024-04153-1","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Although traditionally considered pristine, Antarctica faces an increasing threat of antibiotic resistance due to human intervention. Here, we obtained a bacterial isolate, the CAS19 strain, from a lake water sample from Ardley Island, Antarctica and characterized it comprehensively. The CAS19 was a psychrotrophic and neutrophilic/alkalitolerant bacterium thriving at temperatures from 15 to 33 °C and pH levels from 6.0 to 9.0. Besides the production of siderophore and indole acetic acid, it also exhibited proteolytic and lipolytic activities. It was identified as Pseudomonas migulae by multilocus (16S rRNA, gyrB, rpoB and rpoD) sequence analysis, and its genome was 6.5 Mbps in length, had 59% GC content, and contained 5,821 coding sequences. The CAS19 was resistant to several antibiotics, including trimethoprim, penicillin, vancomycin, and erythromycin, confirmed by RT-qPCR analysis, with a notable increase in dfr (63-fold), bla (461-fold), vanW (31.7-fold) and macA (24.7-fold) expressions upon antibiotic exposure. Additionally, CAS19 exhibited resistance to heavy metals with an order of Cr(III) = Cu(II) > Ni(II) > Zn(II) > Cd(II), and showed diesel fuel (5%) degradation capacity. Cold-related genes cspA_2 and cspD were overexpressed at 4 and 15 °C, consistent with the cold adaptation mechanism. In conclusion, for the first time an Antarctic P. migulae isolate has been characterized in detail, uncovering a rich resistome repertoir that might be associated with anthropogenic disturbances.
期刊介绍:
World Journal of Microbiology and Biotechnology publishes research papers and review articles on all aspects of Microbiology and Microbial Biotechnology.
Since its foundation, the Journal has provided a forum for research work directed toward finding microbiological and biotechnological solutions to global problems. As many of these problems, including crop productivity, public health and waste management, have major impacts in the developing world, the Journal especially reports on advances for and from developing regions.
Some topics are not within the scope of the Journal. Please do not submit your manuscript if it falls into one of the following categories:
· Virology
· Simple isolation of microbes from local sources
· Simple descriptions of an environment or reports on a procedure
· Veterinary, agricultural and clinical topics in which the main focus is not on a microorganism
· Data reporting on host response to microbes
· Optimization of a procedure
· Description of the biological effects of not fully identified compounds or undefined extracts of natural origin
· Data on not fully purified enzymes or procedures in which they are applied
All articles published in the Journal are independently refereed.