Dabin Cha , Seunghyun Choi , Yumin Lee , Jongki Cho , Sanghoon Lee
{"title":"Mitoquinone improves porcine embryo development through modulating oxidative stress and mitochondrial function","authors":"Dabin Cha , Seunghyun Choi , Yumin Lee , Jongki Cho , Sanghoon Lee","doi":"10.1016/j.theriogenology.2024.10.011","DOIUrl":null,"url":null,"abstract":"<div><div>Oxidative stress caused by excess reactive oxygen species (ROS) is one of the main causes of low efficiency in <em>in vitro</em> production of embryos. These ROS can cause mitochondrial dysfunction and apoptosis, resulting in poor embryo development. Therefore, to prevent mitochondrial damage and apoptosis caused by ROS, we investigated the effects of mitoquinone (MitoQ), a mitochondrial-targeted antioxidant, on the <em>in vitro</em> culture (IVC) of porcine embryos. Various concentrations of MitoQ (0, 0.01, 0.1, or 1 nM) were supplemented during the entire period of IVC. The results showed that supplementation with 0.1 nM MitoQ significantly increased the blastocyst formation rate, with a higher total cell number including trophectoderm cell number and higher transcript expression of lineage-specific transcription factors in blastocysts. In addition, the 0.1 nM MitoQ-treated group showed a significantly lower percentage and number of apoptotic cells in blastocysts with positively regulated transcript expression of apoptosis-related genes. Therefore, 0.1 nM MitoQ was suggested as optimal concentration for porcine IVC and used for further investigations. MitoQ treatment significantly reduced intracellular ROS levels and increased glutathione levels in Day 2 embryos, with upregulated the transcript expression of antioxidant enzymes-related genes. Furthermore, the MitoQ group exhibited a significantly higher mitochondrial quantity, mitochondrial membrane potential, and ATP content in Day 2 embryos, with increased transcript expression of mitochondrial biogenesis-related genes. Taken together, these findings reveal that MitoQ supplementation can enhance the developmental competence of porcine embryos by decreasing oxidative stress and improving mitochondrial function.</div></div>","PeriodicalId":23131,"journal":{"name":"Theriogenology","volume":"231 ","pages":"Pages 90-100"},"PeriodicalIF":2.4000,"publicationDate":"2024-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Theriogenology","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0093691X24004254","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"REPRODUCTIVE BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Oxidative stress caused by excess reactive oxygen species (ROS) is one of the main causes of low efficiency in in vitro production of embryos. These ROS can cause mitochondrial dysfunction and apoptosis, resulting in poor embryo development. Therefore, to prevent mitochondrial damage and apoptosis caused by ROS, we investigated the effects of mitoquinone (MitoQ), a mitochondrial-targeted antioxidant, on the in vitro culture (IVC) of porcine embryos. Various concentrations of MitoQ (0, 0.01, 0.1, or 1 nM) were supplemented during the entire period of IVC. The results showed that supplementation with 0.1 nM MitoQ significantly increased the blastocyst formation rate, with a higher total cell number including trophectoderm cell number and higher transcript expression of lineage-specific transcription factors in blastocysts. In addition, the 0.1 nM MitoQ-treated group showed a significantly lower percentage and number of apoptotic cells in blastocysts with positively regulated transcript expression of apoptosis-related genes. Therefore, 0.1 nM MitoQ was suggested as optimal concentration for porcine IVC and used for further investigations. MitoQ treatment significantly reduced intracellular ROS levels and increased glutathione levels in Day 2 embryos, with upregulated the transcript expression of antioxidant enzymes-related genes. Furthermore, the MitoQ group exhibited a significantly higher mitochondrial quantity, mitochondrial membrane potential, and ATP content in Day 2 embryos, with increased transcript expression of mitochondrial biogenesis-related genes. Taken together, these findings reveal that MitoQ supplementation can enhance the developmental competence of porcine embryos by decreasing oxidative stress and improving mitochondrial function.
期刊介绍:
Theriogenology provides an international forum for researchers, clinicians, and industry professionals in animal reproductive biology. This acclaimed journal publishes articles on a wide range of topics in reproductive and developmental biology, of domestic mammal, avian, and aquatic species as well as wild species which are the object of veterinary care in research or conservation programs.