The Effect of Platelet Fibrin Plasma (PFP) on Postoperative Refractory Wounds: Physiologically Concentrated Platelet Plasma in Wound Repair.

IF 4.4 4区 医学 Q2 CELL & TISSUE ENGINEERING
Lu Fan, Ying Zhang, Xiankun Yin, Silu Chen, Pin Wu, Tianru Huyan, Ziyang Wang, Qun Ma, Hua Zhang, Wenhui Wang, Chunyan Gu, Lu Tie, Long Zhang
{"title":"The Effect of Platelet Fibrin Plasma (PFP) on Postoperative Refractory Wounds: Physiologically Concentrated Platelet Plasma in Wound Repair.","authors":"Lu Fan, Ying Zhang, Xiankun Yin, Silu Chen, Pin Wu, Tianru Huyan, Ziyang Wang, Qun Ma, Hua Zhang, Wenhui Wang, Chunyan Gu, Lu Tie, Long Zhang","doi":"10.1007/s13770-024-00665-x","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>Surgical wounds that can't complete primary healing three weeks after surgery are called postoperative refractory wounds. Postoperative refractory wounds would bring great physical and life burdens to the patients and seriously affect their quality of life. To investigate the effect of platelet fibrin plasma (PFP) on postoperative refractory wound healing.</p><p><strong>Approach: </strong>The composition of PFP was analyzed using blood routine and blood biochemicals. Clinical data were collected that met the inclusion criteria after treatment with PFP, and the efficacy of PFP was evaluated by wound healing rate and days to healing. Next, growth factor content in PFP, PRP, and PPP was analyzed using ELISA, and PFP-treated cells were applied to investigate the effect of PFP on fibroblast and endothelial cell function.</p><p><strong>Results: </strong>PFP component analysis revealed no statistical difference between platelet concentration in PFP and physiological concentration. Clinical statistics showed that PFP treatment was effective in the postoperative refractory wound (four-week wound healing rate > 90%), significantly better than continuous wound dressing. Meanwhile, our result also proved that PFP treatment significantly enhanced vascularization by upregulated the expression level of CD31 and improved granulation tissue thickness. Activated PFP, PRP, and PPP could continuously release growth factors in vitro and the amount of growth factors released by PRP and PFP was significantly higher than PPP. In vitro studies demonstrated that active PFP could improve cell proliferation, migration, adhesion, and angiogenesis in fibroblasts and endothelial cells.</p><p><strong>Innovation: </strong>Physiologically concentrated platelet plasma promoted wound healing and improved related cellular functions. The modified PFP (responsible for accelerating wound healing and enhancing the migration and proliferation of fibroblasts and endothelial cells) was prepared and analyzed for its clinical effectiveness in postoperative refractory wounds.</p><p><strong>Conclusion: </strong>Physiologically concentrated platelet plasma promoted wound healing and improved related cellular functions. The preparation of PFP could significantly reduce the amount of prepared blood, with a good application value for postoperative wounds. PFP can be considered a treatment option, especially for postoperative refractory wounds.</p>","PeriodicalId":23126,"journal":{"name":"Tissue engineering and regenerative medicine","volume":" ","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2024-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tissue engineering and regenerative medicine","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s13770-024-00665-x","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CELL & TISSUE ENGINEERING","Score":null,"Total":0}
引用次数: 0

Abstract

Objective: Surgical wounds that can't complete primary healing three weeks after surgery are called postoperative refractory wounds. Postoperative refractory wounds would bring great physical and life burdens to the patients and seriously affect their quality of life. To investigate the effect of platelet fibrin plasma (PFP) on postoperative refractory wound healing.

Approach: The composition of PFP was analyzed using blood routine and blood biochemicals. Clinical data were collected that met the inclusion criteria after treatment with PFP, and the efficacy of PFP was evaluated by wound healing rate and days to healing. Next, growth factor content in PFP, PRP, and PPP was analyzed using ELISA, and PFP-treated cells were applied to investigate the effect of PFP on fibroblast and endothelial cell function.

Results: PFP component analysis revealed no statistical difference between platelet concentration in PFP and physiological concentration. Clinical statistics showed that PFP treatment was effective in the postoperative refractory wound (four-week wound healing rate > 90%), significantly better than continuous wound dressing. Meanwhile, our result also proved that PFP treatment significantly enhanced vascularization by upregulated the expression level of CD31 and improved granulation tissue thickness. Activated PFP, PRP, and PPP could continuously release growth factors in vitro and the amount of growth factors released by PRP and PFP was significantly higher than PPP. In vitro studies demonstrated that active PFP could improve cell proliferation, migration, adhesion, and angiogenesis in fibroblasts and endothelial cells.

Innovation: Physiologically concentrated platelet plasma promoted wound healing and improved related cellular functions. The modified PFP (responsible for accelerating wound healing and enhancing the migration and proliferation of fibroblasts and endothelial cells) was prepared and analyzed for its clinical effectiveness in postoperative refractory wounds.

Conclusion: Physiologically concentrated platelet plasma promoted wound healing and improved related cellular functions. The preparation of PFP could significantly reduce the amount of prepared blood, with a good application value for postoperative wounds. PFP can be considered a treatment option, especially for postoperative refractory wounds.

血小板纤维蛋白血浆(PFP)对术后难治性伤口的影响:伤口修复中的生理浓缩血小板血浆。
目的:术后三周仍不能完成原发愈合的手术伤口称为术后难治性伤口。术后难愈伤口会给患者带来极大的身体和生活负担,严重影响患者的生活质量。研究血小板纤维蛋白血浆(PFP)对术后难治性伤口愈合的影响:方法:利用血常规和血液生化指标分析血小板纤维蛋白血浆的成分。收集使用 PFP 治疗后符合纳入标准的临床数据,并通过伤口愈合率和愈合天数评估 PFP 的疗效。接着,用 ELISA 分析了 PFP、PRP 和 PPP 中的生长因子含量,并应用 PFP 处理过的细胞研究 PFP 对成纤维细胞和内皮细胞功能的影响:PFP成分分析显示,PFP中血小板浓度与生理浓度无统计学差异。临床统计显示,PFP 对术后难治性伤口(四周伤口愈合率大于 90%)的治疗效果明显优于连续性伤口敷料。同时,我们的研究结果还证明,PFP 能通过上调 CD31 的表达水平显著增强血管生成,并改善肉芽组织厚度。活化的 PFP、PRP 和 PPP 可在体外持续释放生长因子,且 PRP 和 PFP 释放的生长因子量明显高于 PPP。体外研究表明,活性血小板可改善成纤维细胞和内皮细胞的细胞增殖、迁移、粘附和血管生成:创新:生理浓缩血小板血浆可促进伤口愈合并改善相关细胞功能。创新:生理浓缩血小板血浆可促进伤口愈合并改善相关细胞功能。制备了改良血小板血浆(可加速伤口愈合并增强成纤维细胞和内皮细胞的迁移和增殖),并分析了其对术后难治性伤口的临床疗效:结论:生理浓缩血小板血浆可促进伤口愈合并改善相关细胞功能。结论:生理学浓缩血小板血浆可促进伤口愈合,改善相关细胞功能。制备血小板血浆可大大减少备血量,对术后伤口具有良好的应用价值。血小板浓缩血浆可作为一种治疗选择,尤其是对术后难治性伤口。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Tissue engineering and regenerative medicine
Tissue engineering and regenerative medicine CELL & TISSUE ENGINEERING-ENGINEERING, BIOMEDICAL
CiteScore
6.80
自引率
5.60%
发文量
83
审稿时长
6-12 weeks
期刊介绍: Tissue Engineering and Regenerative Medicine (Tissue Eng Regen Med, TERM), the official journal of the Korean Tissue Engineering and Regenerative Medicine Society, is a publication dedicated to providing research- based solutions to issues related to human diseases. This journal publishes articles that report substantial information and original findings on tissue engineering, medical biomaterials, cells therapy, stem cell biology and regenerative medicine.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信