Bayesian blockwise inference for joint models of longitudinal and multistate data with application to longitudinal multimorbidity analysis.

IF 1.6 3区 医学 Q3 HEALTH CARE SCIENCES & SERVICES
Statistical Methods in Medical Research Pub Date : 2024-11-01 Epub Date: 2024-10-21 DOI:10.1177/09622802241281959
Sida Chen, Danilo Alvares, Christopher Jackson, Tom Marshall, Krish Nirantharakumar, Sylvia Richardson, Catherine L Saunders, Jessica K Barrett
{"title":"Bayesian blockwise inference for joint models of longitudinal and multistate data with application to longitudinal multimorbidity analysis.","authors":"Sida Chen, Danilo Alvares, Christopher Jackson, Tom Marshall, Krish Nirantharakumar, Sylvia Richardson, Catherine L Saunders, Jessica K Barrett","doi":"10.1177/09622802241281959","DOIUrl":null,"url":null,"abstract":"<p><p>Multistate models provide a useful framework for modelling complex event history data in clinical settings and have recently been extended to the joint modelling framework to appropriately handle endogenous longitudinal covariates, such as repeatedly measured biomarkers, which are informative about health status and disease progression. However, the practical application of such joint models faces considerable computational challenges. Motivated by a longitudinal multimorbidity analysis of large-scale UK health records, we introduce novel Bayesian inference approaches for these models that are capable of handling complex multistate processes and large datasets with straightforward implementation. These approaches decompose the original estimation task into smaller inference blocks, leveraging parallel computing and facilitating flexible model specification and comparison. Using extensive simulation studies, we show that the proposed approaches achieve satisfactory estimation accuracy, with notable gains in computational efficiency compared to the standard Bayesian estimation strategy. We illustrate our approaches by analysing the coevolution of routinely measured systolic blood pressure and the progression of three important chronic conditions, using a large dataset from the Clinical Practice Research Datalink Aurum database. Our analysis reveals distinct and previously lesser-known association structures between systolic blood pressure and different disease transitions.</p>","PeriodicalId":22038,"journal":{"name":"Statistical Methods in Medical Research","volume":" ","pages":"2027-2042"},"PeriodicalIF":1.6000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11577689/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistical Methods in Medical Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1177/09622802241281959","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/10/21 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"HEALTH CARE SCIENCES & SERVICES","Score":null,"Total":0}
引用次数: 0

Abstract

Multistate models provide a useful framework for modelling complex event history data in clinical settings and have recently been extended to the joint modelling framework to appropriately handle endogenous longitudinal covariates, such as repeatedly measured biomarkers, which are informative about health status and disease progression. However, the practical application of such joint models faces considerable computational challenges. Motivated by a longitudinal multimorbidity analysis of large-scale UK health records, we introduce novel Bayesian inference approaches for these models that are capable of handling complex multistate processes and large datasets with straightforward implementation. These approaches decompose the original estimation task into smaller inference blocks, leveraging parallel computing and facilitating flexible model specification and comparison. Using extensive simulation studies, we show that the proposed approaches achieve satisfactory estimation accuracy, with notable gains in computational efficiency compared to the standard Bayesian estimation strategy. We illustrate our approaches by analysing the coevolution of routinely measured systolic blood pressure and the progression of three important chronic conditions, using a large dataset from the Clinical Practice Research Datalink Aurum database. Our analysis reveals distinct and previously lesser-known association structures between systolic blood pressure and different disease transitions.

应用于纵向多疾病分析的纵向和多状态数据联合模型的贝叶斯分块推断。
多态模型为临床环境中复杂事件史数据的建模提供了一个有用的框架,最近已扩展到联合建模框架,以适当处理内生纵向协变量,如重复测量的生物标志物,这些协变量对健康状况和疾病进展具有参考价值。然而,这类联合模型的实际应用面临着相当大的计算挑战。在对英国大规模健康记录进行纵向多疾病分析的激励下,我们为这些模型引入了新的贝叶斯推断方法,这些方法能够处理复杂的多态过程和大型数据集,并能直接实施。这些方法将原来的估计任务分解成较小的推断块,利用并行计算,促进了灵活的模型规范和比较。通过大量的模拟研究,我们表明,与标准的贝叶斯估计策略相比,所提出的方法在显著提高计算效率的同时,还达到了令人满意的估计精度。我们利用临床实践研究数据链 Aurum 数据库中的大型数据集,分析了常规测量的收缩压与三种重要慢性疾病进展的共同演化,以此说明我们的方法。我们的分析揭示了收缩压与不同疾病转归之间独特的、以前鲜为人知的关联结构。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Statistical Methods in Medical Research
Statistical Methods in Medical Research 医学-数学与计算生物学
CiteScore
4.10
自引率
4.30%
发文量
127
审稿时长
>12 weeks
期刊介绍: Statistical Methods in Medical Research is a peer reviewed scholarly journal and is the leading vehicle for articles in all the main areas of medical statistics and an essential reference for all medical statisticians. This unique journal is devoted solely to statistics and medicine and aims to keep professionals abreast of the many powerful statistical techniques now available to the medical profession. This journal is a member of the Committee on Publication Ethics (COPE)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信