The Climate Data for Adaptation and Vulnerability Assessments and the Spatial Interactions Downscaling Method.

IF 5.8 2区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Andre Geraldo de Lima Moraes, Sajad Khoshnood Motlagh
{"title":"The Climate Data for Adaptation and Vulnerability Assessments and the Spatial Interactions Downscaling Method.","authors":"Andre Geraldo de Lima Moraes, Sajad Khoshnood Motlagh","doi":"10.1038/s41597-024-03995-6","DOIUrl":null,"url":null,"abstract":"<p><p>This study presents the spatial interactions downscaling (SPID) method and introduces the climate data for adaptation and vulnerability assessments (ClimAVA) dataset. SPID employs random forest models to capture the relationship between spatial patterns at global circulation model (GCM) resolution and fine-resolution pixel values. In summary, a random forest model is trained for each fine spatial resolution pixel of the reference data as the predictand, and nine pixels from the spatially resampled (coarser) version of the reference data at the GCM's resolutions as predictors. Models are then utilized to downscale the bias-corrected GCM data. The ClimAVA-SW dataset offers a high-resolution (4 km), bias-corrected, downscaled future climate projection derived from seventeen CMIP6 GCMs. It includes three variables (daily precipitation, minimum and maximum temperature) for three shared socioeconomic pathways (SSP245, SSP370, SSP585) across the U.S. Southwest region. The ClimAVA dataset sets itself apart with the SPID method's capacity to provide remarkable climate realism, high physical plausibility of change, and excellent representation of extreme events while maintaining user-friendliness and requiring relatively low computational resources.</p>","PeriodicalId":21597,"journal":{"name":"Scientific Data","volume":"11 1","pages":"1157"},"PeriodicalIF":5.8000,"publicationDate":"2024-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11490614/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scientific Data","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41597-024-03995-6","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

This study presents the spatial interactions downscaling (SPID) method and introduces the climate data for adaptation and vulnerability assessments (ClimAVA) dataset. SPID employs random forest models to capture the relationship between spatial patterns at global circulation model (GCM) resolution and fine-resolution pixel values. In summary, a random forest model is trained for each fine spatial resolution pixel of the reference data as the predictand, and nine pixels from the spatially resampled (coarser) version of the reference data at the GCM's resolutions as predictors. Models are then utilized to downscale the bias-corrected GCM data. The ClimAVA-SW dataset offers a high-resolution (4 km), bias-corrected, downscaled future climate projection derived from seventeen CMIP6 GCMs. It includes three variables (daily precipitation, minimum and maximum temperature) for three shared socioeconomic pathways (SSP245, SSP370, SSP585) across the U.S. Southwest region. The ClimAVA dataset sets itself apart with the SPID method's capacity to provide remarkable climate realism, high physical plausibility of change, and excellent representation of extreme events while maintaining user-friendliness and requiring relatively low computational resources.

用于适应性和脆弱性评估的气候数据以及空间相互作用降尺度方法。
本研究介绍了空间交互降尺度(SPID)方法,并介绍了用于适应和脆弱性评估的气候数据(ClimAVA)数据集。SPID 采用随机森林模型来捕捉全球环流模型(GCM)分辨率的空间模式与精细分辨率像素值之间的关系。总之,以参考数据的每个精细空间分辨率像素为预测对象,以 GCM 分辨率的参考数据空间重采样(较粗)版本中的九个像素为预测对象,训练随机森林模型。然后利用模型对经过偏差校正的 GCM 数据进行降尺度处理。ClimAVA-SW 数据集提供了一个高分辨率(4 公里)、经过偏差校正、降尺度的未来气候预测,该预测源自 17 个 CMIP6 GCM。它包括美国西南部地区三种共同社会经济路径(SSP245、SSP370 和 SSP585)的三个变量(日降水量、最低气温和最高气温)。ClimAVA 数据集与众不同之处在于 SPID 方法能够提供显著的气候真实性、高度的物理变化合理性以及对极端事件的出色表现,同时保持用户友好性并需要相对较少的计算资源。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Scientific Data
Scientific Data Social Sciences-Education
CiteScore
11.20
自引率
4.10%
发文量
689
审稿时长
16 weeks
期刊介绍: Scientific Data is an open-access journal focused on data, publishing descriptions of research datasets and articles on data sharing across natural sciences, medicine, engineering, and social sciences. Its goal is to enhance the sharing and reuse of scientific data, encourage broader data sharing, and acknowledge those who share their data. The journal primarily publishes Data Descriptors, which offer detailed descriptions of research datasets, including data collection methods and technical analyses validating data quality. These descriptors aim to facilitate data reuse rather than testing hypotheses or presenting new interpretations, methods, or in-depth analyses.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信